安徽省黄山市徽州中学2022年数学高二第二学期期末统考模拟试题含解析_第1页
安徽省黄山市徽州中学2022年数学高二第二学期期末统考模拟试题含解析_第2页
安徽省黄山市徽州中学2022年数学高二第二学期期末统考模拟试题含解析_第3页
安徽省黄山市徽州中学2022年数学高二第二学期期末统考模拟试题含解析_第4页
安徽省黄山市徽州中学2022年数学高二第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为A24B48C60D722设函数,则不等式的解

2、集为( )ABCD3已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD4若关于的一元二次不等式的解集为,则()ABCD5设函数,满足,若函数存在零点,则下列一定错误的是( )ABCD6函数 在的图像大致为( )ABCD7已知是定义在上的可导函数,的图象如图所示,则的单调减区间是( )ABCD8已知,则的最小值为( )ABCD9若直线 (t为参数)与直线垂直,则常数k=()AB6C6D10某班级在一次数学竞赛中为全班同学设置了一等奖、二等奖、三等奖以及参与奖,且奖品的单价分别为:一等奖20元、二等奖10元、三等奖5元、参与奖2元,获奖人数的分配情况如图所示,则以下

3、说法正确的是( )A参与奖总费用最高B三等奖的总费用是二等奖总费用的2倍C购买奖品的费用的平均数为9.25元D购买奖品的费用的中位数为2元11已知复数且,则的范围为( )ABCD12下列有关命题的说法正确的是()A命题“若x21,则x1”的否命题为“若x21,则x1”B“x1”是“x25x60”的必要不充分条件C命题“若xy,则sin xsin y”的逆否命题为真命题D命题“x0R使得”的否定是“xR,均有x2x10”二、填空题:本题共4小题,每小题5分,共20分。13已知,且,则 14已知正的边长为,则到三个顶点的距离都为的平面有_个.15已知双曲线的左顶点和右焦点到一条渐近线的距离之比为1

4、:2,则该双曲线的渐近线方程为_.16已知是虚数单位,若复数,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,在正四棱柱中,点是的中点(1)求异面直线与所成角的余弦值;(2)求直线与平面所成角的正弦值18(12分)已知函数的定义域为.(1)若,解不等式;(2)若,求证:.19(12分)如图,多面体,平面平面,是的中点,是上的点.()若平面,证明:是的中点;()若,求二面角的平面角的余弦值.20(12分)在直角坐标系中,曲线(为参数,),曲线(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为:,记曲线与的交点为.()求点的直角坐标;

5、()当曲线与有且只有一个公共点时,与相较于两点,求的值.21(12分)近年来我国电子商务行业迎来发展的新机遇.2016年618期间,某购物平台的销售业绩高达516亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.(1)先完成关于商品和服务评价的22列联表,再判断能否在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关?(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量:

6、求对商品和服务全好评的次数的分布列;求的数学期望和方差.附临界值表:的观测值:(其中)关于商品和服务评价的22列联表:对服务好评对服务不满意合计对商品好评对商品不满意合计22(10分)某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表商店名称ABCDE销售额x(千万元)35679利润额y(百万元)23345(1)画出散点图观察散点图,说明两个变量有怎样的相关性.(2)用最小二乘法计算利润额y对销售额x的回归直线方程(3)当销售额为4(千万元)时,估计利润额的大小.其中参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解

7、析】试题分析:由题意,要组成没有重复数字的五位奇数,则个位数应该为1或3或5,其他位置共有种排法,所以奇数的个数为,故选D.【考点】排列、组合【名师点睛】利用排列、组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏,分步时要注意整个事件的完成步骤在本题中,个位是特殊位置,第一步应先安排这个位置,第二步再安排其他四个位置2、B【解析】f(x)=(x2+1)+=f(x),f(x)为R上的偶函数,且在区间0,+)上单调递减,再通过换元法解题【详解】f(x)=(x2+1)+=f(x),f(x)为R上的偶函数,且在区间0,+)上单调递减,令t=log2x,所以,=t,则不等式f(log2x)+f

8、()2可化为:f(t)+f(t)2,即2f(t)2,所以,f(t)1,又f(1)=2+=1,且f(x)在0,+)上单调递减,在R上为偶函数,1t1,即log2x1,1,解得,x,2,故选B【点睛】本题主要考查了对数型复合函数的性质,涉及奇偶性和单调性的判断及应用,属于中档题3、A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线

9、渐近线方程求法,属于基础题.4、D【解析】根据一元二次不等式与二次函数之间的关系,可得出一元二次不等式的解集为的等价条件.【详解】由于关于的一元二次不等式的解集为,则二次函数的图象恒在轴的下方,所以其开口向下,且图象与轴无公共点,所以,故选:D.【点睛】本题考查一元不等式在实数集上恒成立,要充分利用二次函数的开口方向和与轴的位置关系进行分析,考查推理能力,属于中等题.5、C【解析】分析:先根据确定符号取法,再根据零点存在定理确定与可能关系.详解:单调递增,因为,所以或,根据零点存在定理得或或,因此选C.点睛:确定零点往往需将零点存在定理与函数单调性结合起来应用,一个说明至少有一个,一个说明至多

10、有一个,两者结合就能确定零点的个数.6、C【解析】利用定义考查函数的奇偶性,函数值的符号以及与的大小关系辨别函数的图象【详解】,所以,函数为奇函数,排除D选项;当时,则,排除A选项;又,排除B选项故选C【点睛】本题考查函数图象的辨别,在给定函数解析式辨别函数图象时,要考查函数的定义域、奇偶性、单调性、零点以及特殊值,利用这五个要素逐一排除不符合要求的选项,考查分析问题的能力,属于中等题7、B【解析】分析:先根据图像求出,即得,也即得结果.详解:因为当时,所以当时,所以的单调减区间是,选B.点睛:函数单调性问题,往往转化为导函数符号是否变号或怎样变号问题,经常转化为解方程或不等式.8、D【解析】

11、首先可换元,通过再利用基本不等式即可得到答案.【详解】由题意,可令,则,于是,而,故的最小值为,故答案为D.【点睛】本题主要考查基本不等式的综合应用,意在考查学生的转化能力,计算能力,难度中等.9、B【解析】由参数方程直接求出斜率,表示出另一直线的斜率,利用垂直的直线斜率互为负倒数即可求出参数k.【详解】由参数方程可求得直线斜率为:,另一直线斜率为:,由直线垂直可得:,解得:.故选B.【点睛】本题考查参数方程求斜率与直线的位置关系,垂直问题一般有两个方法:一是利用斜率相乘为-1,另一种是利用向量相乘得0.10、D【解析】先计算参与奖的百分比,分别计算各个奖励的数学期望,中位数,逐一判断每个选项

12、得到答案.【详解】参与奖的百分比为:设人数为单位1一等奖费用: 二等奖费用: 三等奖费用: 参与奖费用: 购买奖品的费用的平均数为: 参与奖的百分比为,故购买奖品的费用的中位数为2元故答案选D【点睛】本题考查了平均值,中位数的计算,意在考查学生的应用能力.11、C【解析】转化为,设,即直线和圆有公共点,联立,即得解.【详解】由于设联立:由于直线和圆有公共点,故的范围为故选:C【点睛】本题考查了直线和圆,复数综合,考查了学生转化划归,数学运算的能力,属于中档题.12、C【解析】命题“若x21,则x1”的否命题为“若x21,则x1”,A不正确;由x25x60,解得x1或6,因此“x1”是“x25x

13、60”的充分不必要条件,B不正确;命题“若xy,则sin xsin y”为真命题,其逆否命题为真命题,C正确;命题“x0R使得x010时,|x|aaxa,|x|axa或xa(2)零点分区间法:含有两个或两个以上绝对值符号的不等式,可用零点分区间法去掉绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解(3)几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解(4)数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解19、()详见解析;().【解析】()利用线面平行的性质定理,可以证明出,利用平行公理可以证明出,由中位线的性质可以证明

14、出N是DP的中点;()方法1:在平面ABCD中作于垂足G,过G作于H,连接AH,利用面面垂直和线面垂直,可以证明出为二面角的平面角,在直角三角形中,利用锐角三角函数,可以求出二面角的平面角的余弦值;方法2:由平面平面PBC,可以得到平面PBC,而即,于是可建立如图空间直角坐标系(C为原点),利用空间向量的数量积,可以求出二面角的平面角的余弦值.【详解】(I)设平面平面,因为平面PBC,平面ADP,所以,又因为,所以平面PBC,所以,所以,又因为M是AP的中点,所以N是DP的中点.(II)方法1:在平面ABCD中作于垂足G,过G作于H,连接AH(如图),因为平面平面PBC,所以平面PBC,所以平

15、面PBC,,所以平面,所以为二面角的平面角,易知,又,所以在中,易知,所以.(II)方法2:因为平面平面PBC,所以平面PBC,而即,于是可建立如图空间直角坐标系(C为原点), 得,所有, 设平面APB的法向量为,则,不妨取,得, 可取平面PBC的法向量为,所求二面角的平面角为,则.【点睛】本题考查了线线平行的证明,考查了线面平行的判定定理和性质定理,考查了面面垂直的性质定理和线面垂直的判定定理,考查了利用空间向量数量积求二面角的余弦值问题问题.20、()()1【解析】试题分析:(1)将 转化为普通方程,解方程组可得 的坐标;(2) 为圆,当有一个公共点时,可求得参数 的值,联立的普通方程,利

16、用根与系数的关系可得的值解:()由曲线可得普通方程. 由曲线可得直角坐标方程:. 由得, ()曲线(为参数,)消去参数可得普通方程:,圆的圆心半径为, 曲线与有且只有一个公共点,即, 设联立得 4x1x24(x1+x2)+42(1)24(1)441.21、(1)能认为商品好评与服务好评有关;(2)详见解析;期望,方差。【解析】试题分析:(1)根据题中条件,对商品好评率为0.6,所以对商品好评次数为次,所以列联表中数据,又条件中对服务好评率为0.75,所以对服务好评次数为,所以列联表中数据,所以可以完成列联表中数据,根据计算公式求出,根据临界值表可以判断商品好评与服务好评有关;(2)根据表中数据

17、可知对商品好评和对服务好评的概率为,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为随机变量X的所有可能取值为0,1,2,3,对应概率为;.从而可以列出分布列;经过分析及计算可知该分布列属于二项分布,即服从二项分布,二项分布的期望,方差。本题考查离散型随机变量分布列中的二项分布,要求学生能够根据题意求出随机变量X的所有可能取值,并求出对应概率,然后求出分布列,再根据二项分布相关知识求出期望和方差,本题难度不大,考查学生对概率基础知识的掌握。属于容易题。试题解析:(1)由题意可得关于商品和服务评价的22列联表如下:对服务好评对服务不满意合计对商品好评8040120对商品不满意701080合计15050200在犯错误的概率不超过0.001的前提下,认为商品好评与服务好评有关.(2)每次购物时,对商品和服务都好评的概率为,且的取值可以是0,1,2,3.其中;.的分布列为:0123由于,则考点:1.独立性检验;2.离散型随机变量分布列。22、(1)见解析(2)(3)2.4(百万元)【解析】(1)根据所给的这一组数据,得到5个点的坐标,把这几个点的坐标在直角坐标系中描出对于的点,即可得到散点图,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论