版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1用反证法证明“”时,应假设( )ABCD2如表提供了某厂节能降耗技术改造后在生产A产品过程中
2、记录的产品(吨)与相应的生产能耗(吨)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,那么表中的值为()A4.5B3.75C4D4.13已知,则的最小值是A BCD4函数的部分图象如图所示,则函数的解析式为( )ABCD5已知,则等于( )ABCD6从A,B,C,D,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为()A24B48C72D1207若随机变量服从正态分布,则()参考数据:若,则,,A0.84B0.9759C0.8185D0.68268已知,集合,集合,则从M到N的函数个数是()A6561B3363C2187
3、D2109已知,则等于( )ABCD110已知函数在有极大值点,则的取值范围为( )ABCD11已知展开式的常数项为15,则( )AB0C1D-112第十九届西北医疗器械展览将于2018年5月18至20日在兰州举行,现将5名志愿者分配到3个不同的展馆参加接待工作,每个展馆至少分配一名志愿者的分配方案种数为 ( )A540B300C180D150二、填空题:本题共4小题,每小题5分,共20分。13已知函数是上奇函数,且当时,则_14已知集合,若,则实数的值是_15分别和两条异面直线相交的两条直线的位置关系是_16若,则的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17
4、(12分)如图,点在以为直径的圆上,垂直与圆所在平面,为 的垂心(1)求证:平面平面 ;(2)若,求二面角的余弦值.18(12分)设,函数.(1) 若,求曲线在处的切线方程;(2)求函数单调区间(3) 若有两个零点,求证: .19(12分)已知函数,为常数()若时,已知在定义域内有且只有一个极值点,求的取值范围;()若,已知,恒成立,求的取值范围。20(12分)已知二项式的展开式中各项的系数和为.(1)求;(2)求展开式中的常数项21(12分)已知实数满足,其中实数满足(1)若,且为真,求实数的取值范围;(2)若是的必要不充分条件,求实数的取值范围22(10分)若,求证:参考答案一、选择题:本
5、题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据反证法的步骤,假设是对原命题结论的否定,即可得出正确选项【详解】根据反证法的步骤,假设是对原命题的否定,P(x0)成立的否定是使得P(x0)不成立,即用反证法证明“xR,2x0”,应假设为x0R,0故选:A【点睛】本题考查反证法的概念,全称命题的否定,注意 “ 改量词否结论”2、C【解析】根据回归直线必过,求出代入回归直线可构造出方程求得结果.【详解】由数据表可知:,由回归直线可知:,即:,解得:本题正确选项:【点睛】本题考查利用回归直线求解实际数据点的问题,关键是能够明确回归直线必过点,
6、属于基础题.3、B【解析】将代数式与代数式相乘,展开后利用基本不等式求出代数式的最小值,然后在不等式两边同时除以可得出答案【详解】因为 ,又,所以,当且仅当时取,故选B【点睛】本题考查利用基本不等式求代数式的最值,在利用基本不等式求最值时,要注意配凑“定值”的条件,注意“一正、二定、三相等”基本思想的应用4、D【解析】根据最值计算 ,利用周期计算,当时取得最大值2,计算,得到函数解析式.【详解】由题意可知,因为:当时取得最大值2,所以:,所以:,解得:,因为:,所以:可得,可得函数的解析式:故选D【点睛】本题主要考查了正弦型函数的图象与性质,其中解答中根据函数的图象求得函数的解析式,熟记三角函
7、数的图象与性质是解答的关键,着重考查了推理与运算能力,属于基础题5、B【解析】根据余弦的半角公式化简、运算,即可求解,得到答案【详解】由题意,可知,则,又由半角公式可得,故选B【点睛】本题主要考查了三角函数的化简、求值问题,其中解答中熟练应用余弦函数的半角公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题6、C【解析】根据题意,分2种情况讨论: 不参加任何竞赛,此时只需要将四个人全排列,对应参加四科竞赛即可;参加竞赛,依次分析与其他四人的情况数目,由分步计数原理可得此时参加方案的种数,进而由分类计数原理计算可得结论.【详解】参加时参赛方案有 (种),不参加时参赛方案有 (种),所
8、以不同的参赛方案共72种,故选C.【点睛】本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.7、A【解析】根据题意可知,所以,由公式即可求出【详解】根据题意可知,所以 ,故选A【点睛】本题主要考查正态分布曲线的特点及曲线所表示的意义,意在考查数形结合思想,化归与转化思想的应用8、C【解析】由(1+x)8a0+a
9、1x+a2x2+a77x+a8x8,可得a0a81,a2a628,a41即可得集合有7个元素,利用函数定义可得从M到N的函数个数【详解】解:由,可得,共7个元素,则从M到N的函数个数是故选:C【点睛】本题主要考查二项式定理的应用,及函数定义,属于中档题9、A【解析】根据和角的范围可求出=,再根据两角和与差的正弦求出的值,进而求出,代入求出结果即可.【详解】因为,=,所以=,所以,所以=.故选A.【点睛】本题考查三角函数给值求角,两角和与差的正弦,诱导公式的应用,特殊角的三角函数值,属于基础题.10、C【解析】分析:令,得,整理得,问题转化为求函数在山过的值域问题,令,则即可.详解:令,得,整理
10、得,令,则,则令,则在单调递减,经检验,满足题意故选C点睛:本题主要考查导数的综合应用极值和导数的关系,要求熟练掌握利用导数研究函数的单调性、极值与最值、把问题等价转化等是解题的关键综合性较强,难度较大11、A【解析】先求出二项式展开式的通项公式,再令的幂指数等于0,求得的值,即可求得展开式中的常数项,再根据常数项为15,求得的值【详解】解:二项式的展开式的通项公式为,令,求得,可得展开式中的常数项为,由此求得,故选:【点睛】本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题12、D【解析】分析:将人分成满足题意的组有与两种,分别计算分为两类情况的分组的种数,再
11、分配到三个不同的展馆,即可得到结果详解:将人分成满足题意的组有与两种,分成时,有种分法;分成时,有种分法,由分类计数原理得,共有种不同的分法,故选D点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率在某些特定问题上,也可充分考虑“正难则反”的思维方式二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析:先
12、求,再根据奇函数得.详解:因为,因为函数是上奇函数,所以点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.14、【解析】分析:根据集合包含关系得元素与集合属于关系,再结合元素互异性得结果.详解:因为,所以点睛:注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.15、相交或异面【解析】根据异面直线的定义可知与两条异面直线相交的两条直线不可能平行,可得到位置关系.【详解】如下图所示:此时的位置关系为:相交如下图所示:此时的位置关系为:异面若
13、平行,则与的四个交点,四点共面;此时共面,不符合异面直线的定义综上所述:的位置关系为相交或异面本题正确结果;相交或异面【点睛】本题考查空间中直线的位置关系的判断,属于基础题.16、【解析】由题可得,再利用基本不等式的性质即可得出结果.【详解】因为,所以,当且仅当时取等号,所以的最小值为4.故答案为:4.【点睛】本题主要考查利用“整体乘1”的方法和基本不等式的性质来求最值,注意基本不等式的前提是正数.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2). 【解析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证 平面,进一步
14、可得平面平面(2)以点为原点,方向分别为,轴正方向建立空间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以 平面.即平面,又平面,所以平面 平面.(2)以点为原点,方向分别为,轴正方向建立空间直角坐标系,则,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则 .点睛:若分别二面角的两个半平
15、面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论)在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键18、(1);(2)见解析;(3)见解析【解析】分析:(1)求出,由的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;(2)求出,分两种情况讨论的范围,在定义域内,分别令,可得函数的增区间,可得函数的减区间;(3)原不等式等价于 令,则,于是,利用导数可证明,从而可得结果.详解:在区间上,. (1)当时,则切线方程为,即(2)若,则,是区间上的增函数, 若,令得: .在区间上, ,函
16、数是增函数; 在区间上, ,函数是减函数; (3)设 ,原不等式 令,则,于是.设函数 ,求导得: 故函数是上的增函数, 即不等式成立,故所证不等式成立.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列
17、及函数单调性有机结合,设计综合题.19、(1)(2)【解析】分析:将代入,求出的表达式,求导,然后综合只有一个极值点即可求出结果法一:将代入,求导后利用单调性来求解;法二:整体思想,采用放缩法进行求解详解:()当时, 因为在定义域内有且只有一个极值点,所以在内有且仅有一根,则有图知,所以 (),法1: 因,恒成立,则内,先必须递增,即先必须,即先必须,因其对称轴,有图知(此时在 ),所以 法2: 因,所以,所以, 令,因, ,所以递增,所以, 点睛:本题考查了含有参量的导数极值问题和恒成立问题,在解答此类题目时将参数代入,然后根据题意进行转化,结合导数的单调性进行证明,本题有一定难度。 20、(1)8;(2).【解析】观察可知,展开式中各项系数的和为,即,解出得到的值利用二次展开式中的第项,即通项公式,将第一问的代入,并整理,令的次数为,解出,得到答案【详解】(1)由题意,得,即256,解得n8. (2)该二项展开式中的第项为Tr1,令0,得r2,此时,常数项为28.【点睛】本题主要考的是利用赋值法解决展开式的系数和问题,考查了利用二次展开式的通项公式解决二次展开式的特定项问题。21、(1);(2)【解析】试题分析:()解不等式可得,可求得时命题中的范围,若为真则说明命题均为真,应将
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 我的“魔鬼教练”作文
- 员工考勤制度
- 《居住规划》课件
- 《混合微电路技术》课件
- 《汽车拆装实训》课件
- 四川省成都市某校2024-2025学年九年级上学期期中考试物理试题(无答案)
- 一年级下册语文教案设计
- 2022年甘肃省公务员录用考试《行测》真题及答案解析
- 2024年新高一数学初升高衔接《指数及其运算》含答案解析
- 【语文课件】归 园 田 居课件
- 影响气候的主要因素复习教学课件
- 《机械制图》校本教材-制图基本知识与技能
- 安全生产事故管理台账
- 河南省重点研发与推广专项(科技攻关)项目申请书(参考模板)
- 呼吸重症医学学习班主持稿
- 《人体内脏》教学课件
- 医院周转宿舍建设项目可行性研究报告
- (完整版)露天参考资料矿山安全标准化记录表格
- 公司内部审批权限一览表
- 2020译林版高中英语选择性必修三单词表
- 脾破裂的超声诊断ppt课件
评论
0/150
提交评论