版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设函数 ,则函数 的定义域为( )ABCD2已知复数满足,则复数在复平面内对应的点为 ( )ABCD3已知为坐标
2、原点,双曲线上有两点满足,且点到直线的距离为,则双曲线的离心率为( )ABCD4某快递公司共有人,从周一到周日的七天中,每天安排一人送货,每人至少送货天,其不同的排法共有( )种.ABCD5在区间上随机取一个数,使直线与圆相交的概率为( )ABCD6若(为虚数单位),则复数()ABCD7对任意实数,若不等式在上恒成立,则的取值范围是( )ABCD8已知曲线的一条切线的斜率为2,则切点的横坐标为()A1Bln 2C2De9如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为( )ABCD10已
3、知定义在上的函数的周期为6,当时,则( )ABCD11已知函数是定义在上的函数,且满足,其中为的导数,设,则、的大小关系是ABCD12已知集合,则图中阴影部分表示的集合为 A1,BCD二、填空题:本题共4小题,每小题5分,共20分。13函数且的图象所过定点的坐标是_.14已知集合若,则a的取值范围是_.15将红、黄、蓝、白、黑5个小球分别放入红、黄、蓝、白、黑5个盒子里,每个盒子里放且只放1个小球,则红球不在红盒内且黄球不在黄盒内的概率是_.16观察下面几个算式:;12345432125.利用上面算式的规律,计算_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)本着
4、健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.()求出甲、乙所付租车费用相同的概率;()求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望18(12分) “蛟龙号”载人潜水艇执行某次任务时从海底带回来某种生物.甲乙两个生物小组分别独立开展对该生物离开恒温箱的成活情况的研究,每次试验一个生物,甲组能使生物成活的概率为,乙
5、组能使生物成活的概率为,假定试验后生物成活,则称该次试验成功,如果生物不成活,则称该次试验失败.(1)甲小组做了三次试验,求至少两次试验成功的概率;(2)如果乙小组成功了4次才停止试验,求乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率;(3)若甲乙两小组各进行2次试验,记试验成功的总次数为随机变量X,求X的概率分布与数学期望.19(12分)已知,设命题:实数满足,命题:实数满足(1)若,为真命题,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围20(12分)已知为正实数,函数.(1)求函数的最大值;(2)若函数的最大值是,求的最小值.21(12分)已知椭圆C: 的左,右焦点
6、分别为且椭圆上的点到两点的距离之和为4(1)求椭圆的方程;(2)若直线与椭圆交于两点,为坐标原点直线的斜率之积等于,试探求OMN的面积是否为定值,并说明理由22(10分)已知函数(1)当时,解不等式;(2)若存在实数解,求实数a取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由根式内部的代数式大于等于0求得f(x)的定义域,再由在f(x)的定义域内求解x的范围得答案【详解】由22x0,可得x1由,得x2函数f()的定义域为(,2故选:B【点睛】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题
7、2、A【解析】利用复数除法运算,化简为的形式,由此求得对应的点的坐标.【详解】依题意,对应的点为,故选A.【点睛】本小题主要考查复数的除法运算,考查复数对应点的坐标,属于基础题.3、A【解析】讨论直线的斜率是否存在:当斜率不存在时,易得直线的方程,根据及点O到直线距离即可求得的关系,进而求得离心率;当斜率存在时,设出直线方程,联立双曲线方程,结合及点到直线距离即可求得离心率。【详解】(1)当直线的斜率不存在时,由点到直线的距离为可知直线的方程为所以线段因为,根据等腰直角三角形及双曲线对称性可知,即双曲线中满足所以,化简可得同时除以 得,解得 因为,所以(2)当直线的斜率存在时,可设直线方程为
8、,联立方程可得化简可得 设 则,因为点到直线的距离为则,化简可得又因为所以化简得即所以,双曲线中满足代入化简可得求得,即 因为,所以综上所述,双曲线的离心率为所以选A【点睛】本题考查了双曲线性质的应用,直线与双曲线的位置关系,注意讨论斜率是否存在的情况,计算量较大,属于难题。4、C【解析】分析:把天分成天组,然后人各选一组值班即可.详解:天分成天,天,天组, 人各选一组值班,共有种,故选C.点睛:本题主要考查分组与分配问题问题,着重考查分步乘法计数原理,意在考查综合运用所学知识解决实际问题的能力,属于中档题.5、C【解析】先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可【
9、详解】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得所以在区间上随机取一个数,使直线与圆相交的概率为故选C【点睛】本题以直线和圆的位置关系为载体考查几何概型,解题的关键是由直线和圆相交求出参数的取值范围,然后根据公式求解,考查转化和计算能力,属于基础题6、B【解析】由可得:,故选B.7、B【解析】考点:绝对值不等式;函数恒成立问题分析:要使不等式|x+2|-|x-1|a恒成立,需f(x)=|x+2|-|x-1|的最小值大于a,问题转化为求f(x)的最小值解:(1)设f(x)=|x+2|-|x-1|,则有f(x)=,当x-2时,f(x)有最小值-1;
10、当-2x1时,f(x)有最小值-1;当x1时,f(x)=1综上f(x)有最小值-1,所以,a-1故答案为B8、D【解析】对函数进行求导,然后让导函数等于2,最后求出切点的横坐标.【详解】,由题意可知,因此切点的横坐标为e,故选D.【点睛】本题考查了导数的几何意义,考查了导数的运算法则,考查了数学运算能力.9、B【解析】分析:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,从而阴影部分的面积为,由此利用几何概型能求出在大正方形内随机取一点,则此点取自阴影部分的概率.详解:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,所以大正方形的面积为1,圆的面积为,小正方形的面积
11、为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率.点睛:本题主要考查了面积比的几何概型及其概率的计算问题,其中根据题意,准确求解阴影部分的面积是解答本题的关键,着重考查了推理与运算能力,以及函数与方程思想的应用,属于基础题.10、C【解析】根据函数的周期性以及时的解析式结合,可得,利用对数的运算性质,化简可得答案【详解】定义在上的函数的周期为6,当时,又,.即,故选C.【点睛】本题主要考查利用函数的周期性求函数的值,考查了学生的计算能力,属于中档题.11、A【解析】构造函数,根据的单调性得出结论【详解】解:令,则,在上单调递增,又,即,即故选:【点睛】本题考查了导数
12、与函数的单调性,考查函数单调性的应用,属于中档题12、B【解析】图中阴影部分表示的集合为,解出集合,再进行集合运算即可【详解】图中阴影部分表示的集合为故选【点睛】本题主要考查了图表达集合的关系及交、并、补的运算,注意集合的限制条件二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由知,解出,进而可知图象所过定点的坐标【详解】由可令,解得,所以图象所过定点的坐标是【点睛】本题考查对数函数的性质,属于简单题14、【解析】首先可先求出二次方程的两根,由于可判断两根与0 的大小,于是可得到答案.【详解】由于的两根为,由于,所以,即,解得,故答案为.【点睛】本题主要考查含参数的一元二次不等式
13、解法,意在考查学生的分析能力和计算能力,难度不大.15、0.65【解析】设红球不在红盒内且黄球不在黄盒内的概率为,再设红球在红盒内的概率为,黄球在黄盒内的概率为,红球在红盒内且黄球在黄盒内的概率为,则红球不在红盒且黄球不在黄盒由古典概型概率公式可得,则,即,故答案为.16、10000【解析】观察归纳中间数为2,结果为422;中间数为3,结果为932;中间数为4,结果为1642;于是中间数为100,结果应为100210 000.故答案为:10 000点睛:这个题目考查的是合情推理中的数学式子的推理;一般对于这种题目,是通过数学表达式寻找规律,进而得到猜想或者通过我们学习过程中的一些特例取归纳推理
14、,注意观察题干中的式子的规律,以免出现偏差三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()02468P数学期望E=2+4+6+8=【解析】(1)由题意得,甲,乙在三小时以上且不超过四小时还车的概率分别为记甲、乙两人所付得租车费用相同为事件,则所以甲、乙两人所付租车费用相同的概率为(2)的可能取值为0,2,4,6,8,分布列如下表:02468考点:离散型随机变量的分布列及概率18、(1);(2);(3)分布列见解析,.【解析】(1)分两类计算:一类是恰有两次成功,另一类是三次均成功;(2)乙小组第四次成功前共进行了6次试验,三次成功三次失败,恰有两次连续失败共有种情况
15、;(3)列出随机变量X的所有可能取值,并求得相应的取值的概率即可得到分布列与期望.【详解】(1)记至少两次试验成功为事件A,则,答:甲小组做三次试验,至少两次试验成功的概率为. (2)由题意知,乙小组第四次成功前共进行了6次试验,其中三次成功三次失败,且恰有两次连续失败,共有种情况. 记乙小组第四次成功前共有三次失败,且恰有两次连续失败为事件B,则,答:乙小组第四次成功前共有三次失败,且恰有两次连续失败的概率为. (3)X的所有可能取值为0,1,2,3,4. , 所以X的概率分布为:X01234P数学期望.【点睛】本题考查独立重复试验的概率、离散型随机变量的分布列、期望,考查学生的运算求解能力
16、,是一道中档题.19、(1)(2)【解析】(1)若,分别求出成立的等价条件,利用为真命题,求出的取值范围;(2)利用是的充分不必要条件,即是的充分不必要条件,求实数的取值范围.【详解】由,得,(1)若,则:,若为真,则,同时为真,即,解得,实数的取值范围.(2)由,得,解得.即:.若是的充分不必要条件,即是的充分不必要条件,则必有,此时:,.则有,即,解得.【点睛】本题主要考查复合命题与简单命题之间的关系,利用逆否命题的等价性将是的充分不必要条件,转化为是的充分不必要条件是解决本题的关键.20、(1).(2)【解析】(1)利用绝对值三角不等式即可求得结果;(2)由(1)可得,利用柯西不等式可求
17、得结果.【详解】(1)由绝对值三角不等式得:(当且仅当时取等号).为正实数,即(当且仅当时取等号),的最大值为.(2)由(1)知:,即.,(当且仅当,即,时取等号).的最小值为.【点睛】本题考查利用绝对值三角不等式和柯西不等式求解最值的问题;利用柯西不等式的关键是能够根据已知等式的形式,配凑出符合柯西不等式形式的式子,属于常考题型.21、(1);(2)定值1【解析】(1)由已知求得,又点在椭圆上,代入求得,即可得到椭圆的方程;(2)设,联立方程组,求得,又由直线的斜率之积等于,化简求得,再由弦长公式和面积公式,即可求解.【详解】(1)由已知,即,又点在椭圆上,所以,所以,故椭圆方程为.(2)设,由,得,则,即,且,因为直线的斜率之积等于,所以,即,又到直线MN的距离为,所以.【点睛】本题主要考查椭圆的标准方程的求解、及直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆(圆锥曲线)方程的方程组,应用一元二次方程根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年重庆市八中高三上学期适应性月考卷(一)英语试题及答案
- 2024房屋装修风格大数据平台技术规范
- 高一化学上册第一章讲课稿
- DB11T 1479-2017 人员密集场所应急疏散演练导则
- 医疗技术及临床专科执业登记申请表
- 福建省泉州市晋江市2024-2025学年二年级上学期期中语文试卷
- 黑龙江省哈尔滨第四十七中学九年级上学期期中化学试题(含答案)
- 2024-2025学年山东省烟台市高三(上)期中考试物理试卷(含答案)
- 便携式盒式录像摄像机市场发展预测和趋势分析
- 噪音等级测量仪产品供应链分析
- 410th循环流化床锅炉本体化学清洗方案(HCL)
- 道路交通安全法律法规
- 2024秋期国家开放大学《政治学原理》一平台在线形考(形考任务四)试题及答案
- 积极准备迎战月考 课件高一上学期备战月考主题班会
- 外研版(2019) 选择性必修第四册 Unit 5 Into the Unknown Understanding ideas教案
- 2024-2030年中国复合铜箔市场需求前景及投融资分析研究研究报告
- 中班健康课件《认识五官》
- 2024福建网龙网络控股限公司校园招聘100人高频500题难、易错点模拟试题附带答案详解
- 2024-2030年中国BPO行业发展分析及发展前景与趋势预测研究报告
- 文明礼仪伴我行文明礼仪从我做起课件
- 2024年全新租金保密协议
评论
0/150
提交评论