新疆哈密石油中学2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第1页
新疆哈密石油中学2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第2页
新疆哈密石油中学2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第3页
新疆哈密石油中学2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第4页
新疆哈密石油中学2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1是虚数单位,则的虚部是( )A-2B-1CD2若函数在其定义域内的一个子区间(k1,k1)内不是单调函数,则实数k的取值范围是()A1,)B,2)C1,2)D1,)3若变量x,y满足约束条件则目标函数的取值范围是A2,6B2,5C3,6D3

2、,54学生会为了调查学生对年俄罗斯世界杯的关注是否与性别有关,抽样调查人,得到如下数据:不关注关注总计男生301545女生451055总计7525100根据表中数据,通过计算统计量,并参考以下临界数据:0.500.400.250.150.100.050.0250.0100.0050.0010.4550.7081.3232.0722.7063.845.0246.6357.87910.828若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过( )ABCD5某射手射击所得环数的分布列如下:78910已知的数学期望,则的值为( )ABCD6在数学兴趣课堂上,老师出了一

3、道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是( )A乙做对了B甲说对了C乙说对了D甲做对了7设,则的值为( )ABCD8下列命题中,正确的命题是( )A若,则B若,则不成立C,则或D,则且9六安一中高三教学楼共五层,甲、乙、丙、丁四人走进该教学楼25层的某一层楼上课,则满足且仅有一人上5楼上课,且甲不在2楼上课的所有可能的情况有( )种A27B81C54D10810已知函数在定义域上有两个极值点,则实数的取值范围是(

4、 )ABCD11在三棱锥中,面,分别为,的中点,则异面直线与所成角的余弦值为( )ABCD12已知变量x,y之间的线性回归方程为,且变量x,y之间的一组相关数据如表所示,则下列说法错误的是( )x681012y6m32A变量x,y之间呈现负相关关系B可以预测,当x=20时,y=3.7Cm=4D该回归直线必过点(9,4)二、填空题:本题共4小题,每小题5分,共20分。13若N,且P(24)0.4,则P(0)_14某班有名学生,其中人选修课程,另外人选修课程,从该班中任选两名学生,他们选修不同课程的概率是_.15已知定义在实数集上的偶函数在区间上是增函数.若存在实数,对任意的,都有,则正整数的最大

5、值为_16若曲线在点处的切线方程为,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知的图象上相邻两对称轴之间的距离为1(1)求的单调递增区间;(2)若,且,求的值18(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知圆的直角坐标方程为.求圆的极坐标方程;设圆与圆:交于两点,求.19(12分)已知,求;设,求和:.20(12分)在平面直角坐标系中,直线的参数方程为(为参数,),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线的极坐标方程;(2)设曲线与曲线的交点分别为,求的最大值及此时直

6、线的倾斜角.21(12分)如图所示,是边长为3的正方形,平面与平面所成角为.()求证:平面;()设点是线段上一个动点,试确定点的位置,使得平面,并证明你的结论22(10分)设函数(1)讨论的单调性;(2)证明:当时,参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】根据复数的除法运算把复数化为代数形式后可得其虚部【详解】由题意得,所以复数的虚部是故选B【点睛】本题考查复数的运算和复数的基本概念,解答本题时容易出现的错误是认为复数的虚部为,对此要强化对基本概念的理解和掌握,属于基础题2、D【解析】利用导数研究函数的极值性,

7、令极值点属于已知区间即可.【详解】所以时递减,时,递增,是极值点,因为函数在其定义域内的一个子区间(k1,k1)内不是单调函数,所以,即,故选:D.【点睛】本题主要考查利用导数研究函数的极值,其中考查了利用导数研究函数的单调性,属于中档题.3、A【解析】画出不等式组对应的可行域,将目标函数变形,画出目标函数对应的直线,由图得到当直线过A点时纵截距最大,z最大,当直线过(2,0)时纵截距最小,z最小【详解】画出可行域,如图所示:将变形为,平移此直线,由图知当直线过A(2,2)时,z最大为6,当直线过(2,0)时,z最小为2,目标函数Zx+2y的取值范围是2,6故选A【点睛】本题考查画不等式组表示

8、的平面区域:直线定边界,特殊点定区域结合图形求函数的最值,属于基础题4、A【解析】因为,所以若由此认为“学生对2018年俄罗斯世界杯的关注与性别有关”,则此结论出错的概率不超过,故选A.【方法点睛】本题主要考查独立性检验的应用,属于中档题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)5、B【解析】根据分布列的概率之和是,得到关于和之间的一个关系式,由变量的期望值,得到另一个关于和之间的一个关系式,联立方程,解得的值.【详解】由题意

9、可知:,解得.故选:B.【点睛】本题考查期望和分布列的简单应用,通过创设情境激发学生学习数学的情感,培养其严谨治学的态度,在学生分析问题、解决问题的过程中培养其积极探索的精神,属于基础题6、B【解析】分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项.【详解】分以下三种情况讨论:甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾;丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾.故选:B.【点睛】本题考查简

10、单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.7、A【解析】解析:当时,;当时,故,应选答案A8、C【解析】A根据复数虚部相同,实部不同时,举例可判断结论是否正确;B根据实数的共轭复数还是其本身判断是否成立;C根据复数乘法的运算法则可知是否正确;D考虑特殊情况:,由此判断是否正确.【详解】A当时,此时无法比较大小,故错误;B当时,所以,所以此时成立,故错误;C根据复数乘法的运算法则可知:或,故正确;D当时,此时且,故错误.故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若,则有.9、B【解

11、析】以特殊元素甲为主体,根据分类计数原理,计算出所有可能的情况,求得结果.【详解】甲在五楼有33甲不在五楼且不在二楼有C3由分类加法计数原理知共有54+27=81种不同的情况,故选B.【点睛】该题主要考查排列组合的有关知识,需要理解排列组合的概念,根据题目要求分情况计数,属于简单题目.10、D【解析】根据等价转化的思想,可得在定义域中有两个不同的实数根,然后利用根的分布情况,进行计算,可得结果.【详解】,令,方程有两个不等正根, 则:故选:D【点睛】本题考查根据函数极值点求参数,还考查二次函数根的分布问题,难点在于使用等价转化的思想,化繁为简,属中档题.11、B【解析】由题意可知,以B为原点,

12、BC,BA,BP分别为x,y,z轴建立空间直角坐标系,利用空间向量坐标法求角即可.【详解】,以B为原点,BC,BA,BP分别为x,y,z轴建立空间直角坐标系,设,则,解得,异面直线与所成角的余弦值为故选B【点睛】本题考查了异面直线所成角的余弦值求法问题,也考查了推理论证能力和运算求解能力,是中档题12、C【解析】根据回归直线方程的性质,以及应用,对选项进行逐一分析,即可进行选择.【详解】对于A:根据b的正负即可判断正负相关关系.线性回归方程为,b=0.70,故负相关.对于B:当x=20时,代入可得y=3.7对于C:根据表中数据:9.可得4.即,解得:m=5.对于D:由线性回归方程一定过(),即

13、(9,4).故选:C.【点睛】本题考查线性回归直线方程的性质,以及回归直线方程的应用,属综合基础题.二、填空题:本题共4小题,每小题5分,共20分。13、0.1【解析】由正态分布曲线的对称性,可得,进而得到所以,即可求解.【详解】由题意,随机变量,且,根据正态分布曲线的对称性,可得,所以.【点睛】本题主要考查了正态分布的应用,其中解答中熟记正态分布曲线的对称性是解答的关键,着重考查了推理与运算能力,属于基础题.14、【解析】先计算出总的方法数,然后在每类选科人中各选一人,利用分步计算原理计算得方法数,根据古典概型概率计算公式计算出所求概率.【详解】该班有名学生则从班级中任选两名学生共有种不同的

14、选法又15人选修课程,另外35人选修课程他们是选修不同课程的学生的情况有: 故从班级中任选两名学生,他们是选修不同课程的学生的概率.【点睛】本小题主要考查古典概型的计算,考查分步乘法计数原理,属于基础题.15、【解析】分析:先根据单调性得对任意的都成立,再根据实数存在性得,即得,解得正整数的最大值.详解:因为偶函数在区间上是增函数,对任意的,都有,所以对任意的都成立,因为存在实数,所以即得,因为成立,所以正整数的最大值为4.点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的

15、条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.16、2【解析】试题分析:,又在点处的切线方程是,考点:三角函数化简求值 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)利用半角公式和辅助角公式可得,根据相邻两对称轴之间的距离为1求解周期T,即得,再令,求解即得单调递增区间;(2)代入,可得,转化,结合即得解.【详解】(1)解:由题意,最小正周期,所以所以由,得,所以的单调递增区间为,(2)因为,由(1)知,即因为,所以从而所以【点睛】本题考查了正弦型函数的综合应用,考查了学生综合

16、分析、转化划归、数学运算的能力,属于中档题.18、 ;4.【解析】(1)直接通过即可得到答案;(2)可先求出圆的标准方程,求出两圆交点,于是可得答案.【详解】根据题意,可得圆的极坐标方程为:即;圆的直角坐标方程为:,联立,两式相减,可得,即代入第一条式子,可解得或,于是.【点睛】本题主要考查直角坐标方程和极坐标方程的互化,圆的交点计算,意在考查学生的转化能力,计算能力,难度中等.19、(1)2;(2);(3)【解析】(1)令求得,令求得所有项的系数和,然后可得结论;(2)改变二项式的“”号为“”号,令可得;(3)由二项展开式通项公式求得,再得,变形,然后由组合数的性质求和【详解】(1)在中,令

17、,得,令,得,;(2)由题意,令,得;(3)由题意,又,【点睛】本题考查二项式定理,考查赋值法求系数和问题,考查组合数的性质及二项式系数的性质解题时难点在于组合数的变形,变形后才能求和20、(1)(2)最大值为8,此时直线的倾斜角为【解析】(1)先将曲线的参数方程化为代数方程,再将此平面直角坐标系的代数方程化为极坐标方程;(2)将直线的参数方程代入曲线的代数方程,得出当取最大值时直线的参数.【详解】(1)因为曲线的参数方程为,所以曲线的普通方程为,即,所以曲线的极坐标方程为,即.(2)设直线上的点对应的参数分别为,将直线的参数方程代入曲线的普通方程,可得,即所以,.故,所以当,即时,取得最大值

18、,最大值为8,此时直线的倾斜角为.【点睛】本题考查曲线的参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,考查直线参数方程中参数的几何意义,考查考生的运算求解能力。21、 ()见解析; () .【解析】试题分析: (1)由线面垂直的判定定理证明; (2)建立空间直角坐标系, 写出各点坐标, 由于点M在线段BD上,所以设 ,求出平面BEF的法向量 ,由 ,求出点M的坐标. 试题解析: ()证明:平面,是正方形,又,平面.()解:因为两两垂直,所以建立空间直角坐标系如图所示,因为与平面所成角为,即,所以,由,可知,则,所以,设平面的法向量,则,即.令得,又点是线段上一动点,设,则因为平面,所以,即解得.此时,点的坐标为(2,2,0)即当时,平面.22、(1)见解析 (2)见解析【解析】(1)先求函数定义域,由导数大于0,得增区间;导数小于0,得减区间;(2)由题意可得即证lnxx1xlnx由(1)的单调性可得lnxx1;设F(x)xlnxx+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论