版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并
2、交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1下列几何体的三视图中,恰好有两个视图相同的几何体是( )A正方体B球体C圆锥D长宽高互不相等的长方体2关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,某同学通过下面的随机模拟方法来估计的值:先用计算机产生个数对,其中,都是区间上的均匀随机数,再统计,能与构成锐角三角形三边长的数对的个数最后根据统计数来估计的值.若,则的估计值为( )ABCD3函数与在上最多有n个交点,交点分别为(,n),则( )A7B8C9D104已知集合,则( )ABC或D5
3、设为的两个零点,且的最小值为1,则( )ABCD6若双曲线的渐近线与圆相切,则双曲线的离心率为( )A2BCD7如图示,三棱锥的底面是等腰直角三角形,且,则与面所成角的正弦值等于( )ABCD8的展开式中的系数为( )ABCD9若,点C在AB上,且,设,则的值为( )ABCD10已知为虚数单位,若复数,则ABCD11阅读下侧程序框图,为使输出的数据为31,则处应填的数字为A4B5C6D712函数在上单调递增,则实数的取值范围是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13如图,、分别是双曲线的左、右焦点,过的直线与双曲线的两条渐近线分别交于、两点,若,则双曲线的离心率是_.
4、14设常数,如果的二项展开式中项的系数为-80,那么_.15为了了解一批产品的长度(单位:毫米)情况,现抽取容量为400的样本进行检测,如图是检测结果的频率分布直方图,根据产品标准,单件产品长度在区间的一等品,在区间和的为二等品,其余均为三等品,则样本中三等品的件数为_16某次足球比赛中,四支球队进入了半决赛.半决赛中,对阵,对阵,获胜的两队进入决赛争夺冠军,失利的两队争夺季军.已知他们之间相互获胜的概率如下表所示.获胜概率0.40.30.8获胜概率0.60.70.5获胜概率0.70.30.3获胜概率0.20.50.7则队获得冠军的概率为_.三、解答题:共70分。解答应写出文字说明、证明过程或
5、演算步骤。17(12分)已知如图1,在RtABC中,ACB=30,ABC=90,D为AC中点,AEBD于E,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示。()求证:AE平面BCD; ()求二面角A-DC-B的余弦值; ()求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程)18(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值19(12分)如图,两座建
6、筑物AB,CD的底部都在同一个水平面上,且均与水平面垂直,它们的高度分别是10m和20m,从建筑物AB的顶部A看建筑物CD的视角CAD60(1)求BC的长度;(2)在线段BC上取一点P(点P与点B,C不重合),从点P看这两座建筑物的视角分别为APB,DPC,问点P在何处时,+最小?20(12分)已知在中,角、的对边分别为,.(1)若,求的值;(2)若,求的面积.21(12分)已知函数(1)若,证明:当时,;(2)若在只有一个零点,求的值.22(10分)已知半径为5的圆的圆心在x轴上,圆心的横坐标是整数,且与直线4x+3y290相切(1)求圆的方程;(2)设直线axy+50(a0)与圆相交于A,
7、B两点,求实数a的取值范围;(3)在(2)的条件下,是否存在实数a,使得弦AB的垂直平分线l过点P(2,4),若存在,求出实数a的值;若不存在,请说明理由2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】根据基本几何体的三视图确定【题目详解】正方体的三个三视图都是相等的正方形,球的三个三视图都是相等的圆,圆锥的三个三视图有一个是圆,另外两个是全等的等腰三角形,长宽高互不相等的长方体的三视图是三个两两不全等的矩形故选:C【答案点睛】本题考查基本几何体的三视图,掌握基本几何体的三视图是
8、解题关键2、B【答案解析】先利用几何概型的概率计算公式算出,能与构成锐角三角形三边长的概率,然后再利用随机模拟方法得到,能与构成锐角三角形三边长的概率,二者概率相等即可估计出.【题目详解】因为,都是区间上的均匀随机数,所以有,若,能与构成锐角三角形三边长,则,由几何概型的概率计算公式知,所以.故选:B.【答案点睛】本题考查几何概型的概率计算公式及运用随机数模拟法估计概率,考查学生的基本计算能力,是一个中档题.3、C【答案解析】根据直线过定点,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.【题目详解】由题可知:直线过定点且在是关于对称如图通过图像可知:直线与最多有9个交点同时点左、
9、右边各四个交点关于对称所以故选:C【答案点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数的性质,属难题.4、D【答案解析】首先求出集合,再根据补集的定义计算可得;【题目详解】解:,解得,.故选:D【答案点睛】本题考查补集的概念及运算,一元二次不等式的解法,属于基础题.5、A【答案解析】先化简已知得,再根据题意得出f(x)的最小值正周期T为12,再求出的值【题目详解】由题得,设x1,x2为f(x)=2sin(x)(0)的两个零点,且的最小值为1,=1,解得T=2;=2,解得=故选A【答案点睛】本题考查了三角恒等变换和三角函数的图象与性质的应用问题,是基础题6、C【
10、答案解析】利用圆心到渐近线的距离等于半径即可建立间的关系.【题目详解】由已知,双曲线的渐近线方程为,故圆心到渐近线的距离等于1,即,所以,.故选:C.【答案点睛】本题考查双曲线离心率的求法,求双曲线离心率问题,关键是建立三者间的方程或不等关系,本题是一道基础题.7、A【答案解析】首先找出与面所成角,根据所成角所在三角形利用余弦定理求出所成角的余弦值,再根据同角三角函数关系求出所成角的正弦值.【题目详解】由题知是等腰直角三角形且,是等边三角形,设中点为,连接,可知,同时易知,所以面,故即为与面所成角,有,故.故选:A.【答案点睛】本题主要考查了空间几何题中线面夹角的计算,属于基础题.8、C【答案
11、解析】由题意,根据二项式定理展开式的通项公式,得展开式的通项为,则展开式的通项为,由,得,所以所求的系数为.故选C.点睛:此题主要考查二项式定理的通项公式的应用,以及组合数、整数幂的运算等有关方面的知识与技能,属于中低档题,也是常考知识点.在二项式定理的应用中,注意区分二项式系数与系数,先求出通项公式,再根据所求问题,通过确定未知的次数,求出,将的值代入通项公式进行计算,从而问题可得解.9、B【答案解析】利用向量的数量积运算即可算出【题目详解】解:,又在上,故选:【答案点睛】本题主要考查了向量的基本运算的应用,向量的基本定理的应用及向量共线定理等知识的综合应用10、B【答案解析】由可得,所以,
12、故选B11、B【答案解析】考点:程序框图分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案解:程序在运行过程中各变量的值如下表示: S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i5时退出,故选B12、B【答案解析】对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【题目详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【答案点睛】本题考查函数单调性,熟练掌握简单初
13、等函数性质是解题关键,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】根据三角形中位线证得,结合判断出垂直平分,由此求得的值,结合求得的值.【题目详解】,为中点,垂直平分,即,即.故答案为:【答案点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题.14、【答案解析】利用二项式定理的通项公式即可得出.【题目详解】的二项展开式的通项公式:,令,解得.,解得.故答案为:-2.【答案点睛】本小题主要考查根据二项式展开式的系数求参数,属于基础题.15、100.【答案解析】分析:根据频率分布直方图得到三等品的频率,然后可求得样本中三等品的件数详解
14、:由题意得,三等品的长度在区间,和内,根据频率分布直方图可得三等品的频率为,样本中三等品的件数为.点睛:频率分布直方图的纵坐标为,因此每一个小矩形的面积表示样本个体落在该区间内的频率,把小矩形的高视为频率时常犯的错误16、0.18【答案解析】根据表中信息,可得胜C的概率;分类讨论B或D进入决赛,再计算A胜B或A胜C的概率即可求解.【题目详解】由表中信息可知,胜C的概率为;若B进入决赛,B胜D的概率为,则A胜B的概率为;若D进入决赛,D胜B的概率为,则A胜D的概率为;由相应的概率公式知,则A获得冠军的概率为.故答案为:0.18【答案点睛】本题考查了独立事件的概率应用,互斥事件的概率求法,属于基础
15、题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()证明见解析;();()1:5【答案解析】()由平面ABD平面BCD,交线为BD,AEBD于E,能证明AE平面BCD;()以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;()利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可【题目详解】()证明:平面ABD平面BCD,交线为BD,又在ABD中,AEBD于E,AE平面ABD,AE平面BCD()由(1)知AE平面BCD,AEEF,由题意知EFBD,又AEB
16、D,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,则BE=ED=1,AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),F(,0,0),C(,2,0),由AE平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,二面角A-DC-B的平面角为锐角,故余弦值为()三棱锥B-AEF与四棱锥A-FEDC的体积的比为:1:5.【答案点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.18、()证明见解析()()
17、【答案解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【题目详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦值.【答案点睛】本题主要考查了平面与平面的垂直,直线
18、与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.19、(1);(2)当BP为cm时,+取得最小值【答案解析】(1)作AECD,垂足为E,则CE10,DE10,设BCx,根据得到,解得答案.(2)设BPt,则,故,设,求导得到函数单调性,得到最值.【题目详解】(1)作AECD,垂足为E,则CE10,DE10,设BCx,则,化简得,解之得,或(舍),(2)设BPt,则,设,令f(t)0,因为,得,当时,f(t)0,f(t)是减函数;当时,f(t)0,f(t)是增函数,所以,当时,f(t)取得最小值,即tan(+)取得最小值,因为恒成立
19、,所以f(t)0,所以tan(+)0,因为ytanx在上是增函数,所以当时,+取得最小值【答案点睛】本题考查了三角恒等变换,利用导数求最值,意在考查学生的计算能力和应用能力.20、(1)7(2)14【答案解析】(1)在中,可得 ,结合正弦定理,即可求得答案;(2)根据余弦定理和三角形面积公式,即可求得答案.【题目详解】(1)在中,.(2),解得,.【答案点睛】本题主要考查了正弦定理和余弦定理解三角形,解题关键是掌握正弦定理边化角,考查了分析能力和计算能力,属于中档题.21、(1)见解析;(2)【答案解析】分析:(1)先构造函数,再求导函数,根据导函数不大于零得函数单调递减,最后根据单调性证得不等式;(2)研究零点,等价研究的零点,先求导数:,这里产生两个讨论点,一个是a与零,一个是x与2,当时,没有零点;当时,先减后增,从而确定只有一个零点的必要条件,再利用零点存在定理确定条件的充分性,即得a的值.详解:(1)当时,等价于设函数,则当时,所以在单调递减而,故当时,即(2)设函数在只有一个零点当且仅当在只有一个零点(i)当时,没有零点;(ii)当时,当时,;当时,所以在单调递减,在单调递增故是在的最小值若,即,在没有零点;若,即,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暑假期间辅导班租房合同
- 惠州个人购房合同样式模板
- 含子女抚养的离婚协议书模板
- 企业运营管理咨询协议样本
- 2024工程挖掘机租赁合同标准范文
- 新住宅按揭贷款合同样本
- 2024录制合同模板
- 2024广告刊登协议范本
- 动物医院聘用合同2024年
- 省级代理合作协议书的注意事项
- 空调安装施工方案及空调安装现场管理办法
- 甘肃省黄金矿产资源概况
- 诊所消防安全应急方案
- 译林版一年级上册英语全册课件
- 中小学德育工作指南考核试题及答案
- 净现值NPV分析和总结
- 国网基建各专业考试题库大全-质量专业-中(多选题汇总)
- LTC流程介绍完整版
- 饲料加工系统粉尘防爆安全规程
- 一年级上册美术课件-第11课-花儿寄深情-▏人教新课标
- 植物的象征意义
评论
0/150
提交评论