版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )ABCD2设实数x,y满足条
2、件x+y-202x-y+30 x-y0则A1B2C3D43复数的共轭复数为( )ABCD4已知函数,且关于的方程有且只有一个实数根,则实数的取值范围( )ABCD5已知点,是函数的函数图像上的任意两点,且在点处的切线与直线AB平行,则( )A,b为任意非零实数B,a为任意非零实数Ca、b均为任意实数D不存在满足条件的实数a,b6若,满足约束条件,则的取值范围为( )ABCD7已知集合,则的值域为()ABCD8已知数列an满足a1=3,且aA22n-1+1B22n-1-19已知集合Mx|1x2,Nx|x(x+3)0,则MN( )A3,2)B(3,2)C(1,0D(1,0)10集合的真子集的个数为
3、( )A7B8C31D3211已知数列an满足:an=2,n5a1A16B17C18D1912已知的内角、的对边分别为、,且,为边上的中线,若,则的面积为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知a,b均为正数,且,的最小值为_.14已知关于的方程在区间上恰有两个解,则实数的取值范围是_15已知ABC得三边长成公比为2的等比数列,则其最大角的余弦值为_.16若幂函数的图象经过点,则其单调递减区间为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,为实数,且()当时,求的单调区间和极值;()求函数在区间,上的值域(其中为自然对数的
4、底数)18(12分)已知椭圆的短轴长为,离心率,其右焦点为.(1)求椭圆的方程;(2)过作夹角为的两条直线分别交椭圆于和,求的取值范围.19(12分)已知数列,满足.(1)求数列,的通项公式;(2)分别求数列,的前项和,.20(12分)在某外国语学校举行的(高中生数学建模大赛)中,参与大赛的女生与男生人数之比为,且成绩分布在,分数在以上(含)的同学获奖按女生、男生用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图如图所示()求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);()填写下面的列联表,并判断在犯错误的概率不超过的前提下能否认为“获奖与女生、男生有
5、关”女生男生总计获奖不获奖总计附表及公式:其中,21(12分)在平面直角坐标系中,以原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线:.过点的直线:(为参数)与曲线相交于,两点.(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求实数的值.22(10分)已知数列的前项和为,且满足()求数列的通项公式;()证明:2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】几何体是由一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,计算得到答案.【题目详解】几何体是由
6、一个圆锥和半球组成,其中半球的半径为1,圆锥的母线长为3,底面半径为1,故几何体的表面积为.故选:.【答案点睛】本题考查了根据三视图求表面积,意在考查学生的计算能力和空间想象能力.2、C【答案解析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【题目详解】如图所示:画出可行域和目标函数,z=x+y+1,即y=-x+z-1,z表示直线在y轴的截距加上1,根据图像知,当x+y=2时,且x-13,1时,故选:C.【答案点睛】本题考查了线性规划问题,画出图像是解题的关键.3、D【答案解析】直接相乘,得,由共轭复数的性质即可得结果【题目详解】其共轭复数为.故选:D【答案点睛】熟悉复数的四则运
7、算以及共轭复数的性质.4、B【答案解析】根据条件可知方程有且只有一个实根等价于函数的图象与直线只有一个交点,作出图象,数形结合即可【题目详解】解:因为条件等价于函数的图象与直线只有一个交点,作出图象如图,由图可知,故选:B【答案点睛】本题主要考查函数图象与方程零点之间的关系,数形结合是关键,属于基础题5、A【答案解析】求得的导函数,结合两点斜率公式和两直线平行的条件:斜率相等,化简可得,为任意非零实数.【题目详解】依题意,在点处的切线与直线AB平行,即有,所以,由于对任意上式都成立,可得,为非零实数.故选:A【答案点睛】本题考查导数的运用,求切线的斜率,考查两点的斜率公式,以及化简运算能力,属
8、于中档题6、B【答案解析】根据约束条件作出可行域,找到使直线的截距取最值得点,相应坐标代入即可求得取值范围.【题目详解】画出可行域,如图所示:由图可知,当直线经过点时,取得最小值5;经过点时,取得最大值5,故.故选:B【答案点睛】本题考查根据线性规划求范围,属于基础题.7、A【答案解析】先求出集合,化简=,令,得由二次函数的性质即可得值域.【题目详解】由,得 ,令, ,所以得 , 在 上递增,在上递减, ,所以,即 的值域为故选A【答案点睛】本题考查了二次不等式的解法、二次函数最值的求法,换元法要注意新变量的范围,属于中档题8、D【答案解析】试题分析:因为an+1=4an+3,所以an+1+1
9、=4(an+1),即an+1+1an+1考点:数列的通项公式9、C【答案解析】先化简Nx|x(x+3)0=x|-3x0,再根据Mx|1x2,求两集合的交集.【题目详解】因为Nx|x(x+3)0=x|-3x0,又因为Mx|1x2,所以MNx|1x0.故选:C【答案点睛】本题主要考查集合的基本运算,还考查了运算求解的能力,属于基础题.10、A【答案解析】计算,再计算真子集个数得到答案.【题目详解】,故真子集个数为:.故选:.【答案点睛】本题考查了集合的真子集个数,意在考查学生的计算能力.11、B【答案解析】由题意可得a1=a2=a3=a4=a5=2,累加法求得a62+【题目详解】解:an即a1=a
10、n6时,a1a1两式相除可得1+a则an2=由a6a7,ak2=可得aa1且a1正整数k(k5)时,要使得a1则ak+1则k=17,故选:B【答案点睛】本题考查与递推数列相关的方程的整数解的求法,注意将题设中的递推关系变形得到新的递推关系,从而可简化与数列相关的方程,本题属于难题.12、B【答案解析】延长到,使,连接,则四边形为平行四边形,根据余弦定理可求出,进而可得的面积.【题目详解】解:延长到,使,连接,则四边形为平行四边形,则,在中,则,得,.故选:B.【答案点睛】本题考查余弦定理的应用,考查三角形面积公式的应用,其中根据中线作出平行四边形是关键,是中档题.二、填空题:本题共4小题,每小
11、题5分,共20分。13、【答案解析】本题首先可以根据将化简为,然后根据基本不等式即可求出最小值.【题目详解】因为,所以,当且仅当,即、时取等号,故答案为:.【答案点睛】本题考查根据基本不等式求最值,基本不等式公式为,在使用基本不等式的时候要注意“”成立的情况,考查化归与转化思想,是中档题.14、【答案解析】先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出【题目详解】因为关于的方程在区间上恰有两个解,令,所以方程在 上只有一解,即有 ,直线与 在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.【
12、答案点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式15、-【答案解析】试题分析:根据题意设三角形的三边长分别设为为a,2a,2a,2a2aa,2a所对的角为最大角,设为,则根据余弦定理得考点:余弦定理及等比数列的定义.16、【答案解析】利用待定系数法求出幂函数的解析式,再求出的单调递减区间【题目详解】解:幂函数的图象经过点,则,解得;所以,其中;所以的单调递减区间为故答案为:【答案点睛】本题考查了幂函数的图象与性质的应用问题,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()极大值0,没有极小值;函数的
13、递增区间,递减区间,()见解析【答案解析】()由,令,得增区间为,令,得减区间为,所以有极大值,无极小值;()由,分,和三种情况,考虑函数在区间上的值域,即可得到本题答案.【题目详解】当时,当时,函数单调递增,当时,函数单调递减,故当时,函数取得极大值,没有极小值;函数的增区间为,减区间为,当时,在上单调递增,即函数的值域为;当时,在上单调递减, 即函数的值域为;当时,易得时,在上单调递增,时,在上单调递减,故当时,函数取得最大值,最小值为,中最小的,当时,最小值;当,最小值;综上,当时,函数的值域为,当时,函数的值域,当时,函数的值域为,当时,函数的值域为.【答案点睛】本题主要考查利用导数求
14、单调区间和极值,以及利用导数研究含参函数在给定区间的值域,考查学生的运算求解能力,体现了分类讨论的数学思想.18、(1);(2).【答案解析】(1)由已知短轴长求出,离心率求出关系,结合,即可求解;(2)当直线的斜率都存在时,不妨设直线的方程为,直线与椭圆方程联立,利用相交弦长公式求出,斜率为,求出,得到关于的表达式,根据表达式的特点用“”判别式法求出范围,当有一斜率不存在时,另一条斜率为,根据弦长公式,求出,即可求出结论.【题目详解】(1)由得,又由得,则,故椭圆的方程为.(2)由(1)知,当直线的斜率都存在时,由对称性不妨设直线的方程为,由,设,则,则,由椭圆对称性可设直线的斜率为,则,.
15、令,则,当时,当时,由得,所以,即,且.当直线的斜率其中一条不存在时,根据对称性不妨设设直线的方程为,斜率不存在,则,此时.若设的方程为,斜率不存在,则,综上可知的取值范围是.【答案点睛】本题考查椭圆标准方程、直线与椭圆的位置关系,注意根与系数关系、弦长公式、函数最值、椭圆性质的合理应用,意在考查逻辑推理、计算求解能力,属于难题.19、(1)(2);【答案解析】(1),可得为公比为2的等比数列,可得为公差为1的等差数列,再算出,的通项公式,解方程组即可;(2)利用分组求和法解决.【题目详解】(1)依题意有又.可得数列为公比为2的等比数列,为公差为1的等差数列,由,得解得故数列,的通项公式分别为
16、.(2),.【答案点睛】本题考查利用递推公式求数列的通项公式以及分组求和法求数列的前n项和,考查学生的计算能力,是一道中档题.20、(),;()详见解析.【答案解析】()根据概率的性质知所有矩形的面积之和等于列式可解得; ()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,从而可得列联表,再计算出,与临界值比较可得【题目详解】解:(),()由频率分布直方图知样本中获奖的人数为,不获奖的人数为,列联表如下:女生男生总计获奖不获奖总计因为,所以在犯错误的概率不超过的前提下能认为“获奖与女生,男生有关”【答案点睛】本题主要考查独立性检验,以及由频率分布直方图求平均数的问题,熟记独立性检验的思想,以及平均数的计算方法即可,属于常考题型.21、(1),;(2).【答案解析】(1)将代入求解,由(为参数)消去即可.(2)将(为参数)与联立得,设,两点对应的参数为,则,再根据,即,利用韦达定理求解.【题目详解】(1)把代入,得,由(为参数),消去得,曲线的直角坐标方程和直线的普通方程分别是,.(2)将(为参数)代入得,设,两点对应的参数为,则,由得,所以,即,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗新技术项目质量管理
- 科研机构门窗施工合同协议书
- 机场环卫工招聘合同
- 网络安全机电工程管理办法
- 产业园区混凝土招标模板
- 节能改造工程承包合同
- 2025年度新型材料购销合作合同
- 2024年版短租公寓租赁合同3篇
- 2024年特定条款个人借款合同范本一
- 2024年版技术开发合同详细条款
- 护理疑难病例讨论造瘘
- 数字孪生技术与MES系统的融合
- 人才梯队(人才库、人才盘点)建设方案
- 全国城市车牌代码一览表
- 小区物业弱电维护方案
- 典型地铁突发事件应急管理案例分析上海地铁碰撞事故
- 广西柳州市2023-2024学年四年级上学期期末考试语文试卷
- 《芯片制造工艺》课件
- 中山大学研究生中特考试大题
- 手术室护理实践指南术中低体温预防
- 四川省成都市2022-2023学年六年级上学期语文期末考试试卷(含答案)5
评论
0/150
提交评论