重庆市江津区2023学年高三(最后冲刺)数学试卷(含解析)_第1页
重庆市江津区2023学年高三(最后冲刺)数学试卷(含解析)_第2页
重庆市江津区2023学年高三(最后冲刺)数学试卷(含解析)_第3页
重庆市江津区2023学年高三(最后冲刺)数学试卷(含解析)_第4页
重庆市江津区2023学年高三(最后冲刺)数学试卷(含解析)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年高考数学模拟测试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

2、的。1已知等式成立,则( )A0B5C7D132已知命题,且是的必要不充分条件,则实数的取值范围为( )ABCD3设椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,直线BF交直线AC于M,且M为AC的中点,则椭圆E的离心率是( )ABCD4命题“”的否定是( )ABCD5阅读如图的程序框图,运行相应的程序,则输出的的值为( )ABCD6记为等差数列的前项和.若,则( )A5B3C12D137已知数列是公比为的等比数列,且,若数列是递增数列,则的取值范围为( )ABCD8已知,是椭圆的左、右焦点,过的直线交椭圆于两点.若依次构成等差数列,且,则椭圆的离心率为ABCD9函数的最大

3、值为,最小正周期为,则有序数对为( )ABCD10已知表示两条不同的直线,表示两个不同的平面,且则“”是“”的( )条件.A充分不必要B必要不充分C充要D既不充分也不必要11已知函数,以下结论正确的个数为( )当时,函数的图象的对称中心为;当时,函数在上为单调递减函数;若函数在上不单调,则;当时,在上的最大值为1A1B2C3D412已知复数z满足,则在复平面上对应的点在( )A第一象限B第二象限C第三象限D第四象限二、填空题:本题共4小题,每小题5分,共20分。13设,则除以的余数是_.14边长为2的菱形中,与交于点O,E是线段的中点,的延长线与相交于点F,若,则_.15若变量,满足约束条件,

4、则的最大值为_16设是公差不为0的等差数列的前n项和,且,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知矩阵不存在逆矩阵,且非零特低值对应的一个特征向量,求的值.18(12分)已知函数(1)当时,求的单调区间(2)设直线是曲线的切线,若的斜率存在最小值-2,求的值,并求取得最小斜率时切线的方程(3)已知分别在,处取得极值,求证:19(12分)在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系已知直线的参数方程为(为参数),曲线的极坐标方程为;(1)求直线的直角坐标方程和曲线的直角坐标方程;(2)若直线与曲线交点分别为,点,求的值20(12

5、分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.()求曲线的普通方程与直线的直角坐标方程;()已知直线与曲线交于,两点,与轴交于点,求.21(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.22(10分)如图,四棱锥中,底面是边长为的菱形,点分别是的中点(1)求证:平面;(2)若,求直线与平面所成角的正弦值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解

6、析】根据等式和特征和所求代数式的值的特征用特殊值法进行求解即可.【题目详解】由可知:令,得;令,得;令,得,得,而,所以.故选:D【答案点睛】本题考查了二项式定理的应用,考查了特殊值代入法,考查了数学运算能力.2、D【答案解析】求出命题不等式的解为,是的必要不充分条件,得是的子集,建立不等式求解.【题目详解】解:命题,即: ,是的必要不充分条件,解得实数的取值范围为故选:【答案点睛】本题考查根据充分、必要条件求参数范围,其思路方法:(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解(2)求解参数的取值范围时, 一定要注

7、意区间端点值的检验3、C【答案解析】连接,为的中位线,从而,且,进而,由此能求出椭圆的离心率.【题目详解】如图,连接,椭圆:的右顶点为A,右焦点为F,B、C为椭圆上关于原点对称的两点,不妨设B在第二象限,直线BF交直线AC于M,且M为AC的中点为的中位线,且,解得椭圆的离心率. 故选:C【答案点睛】本题考查了椭圆的几何性质,考查了运算求解能力,属于基础题.4、D【答案解析】根据全称命题的否定是特称命题,对命题进行改写即可.【题目详解】全称命题的否定是特称命题,所以命题“,”的否定是:,故选D【答案点睛】本题考查全称命题的否定,难度容易.5、C【答案解析】根据给定的程序框图,计算前几次的运算规律

8、,得出运算的周期性,确定跳出循环时的n的值,进而求解的值,得到答案.【题目详解】由题意,第1次循环,满足判断条件;第2次循环,满足判断条件;第3次循环,满足判断条件; 可得的值满足以3项为周期的计算规律,所以当时,跳出循环,此时和时的值对应的相同,即.故选:C.【答案点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中认真审题,得出程序运行时的计算规律是解答的关键,着重考查了推理与计算能力.6、B【答案解析】由题得,解得,计算可得.【题目详解】,解得,.故选:B【答案点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.7、D【答案解析】先根据已知条件求解出

9、的通项公式,然后根据的单调性以及得到满足的不等关系,由此求解出的取值范围.【题目详解】由已知得,则.因为,数列是单调递增数列,所以,则,化简得,所以.故选:D.【答案点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据之间的大小关系分析问题.8、D【答案解析】如图所示,设依次构成等差数列,其公差为.根据椭圆定义得,又,则,解得,.所以,.在和中,由余弦定理得,整理解得.故选D9、B【答案解析】函数(为辅助角)函数的最大值为,最小正周期为故选B10、B【答案解析】根据充分必要条件的概念进行判断.【题目详解】对于充分性:若,则可以平行,相交,异面,故充分性

10、不成立;若,则可得,必要性成立.故选:B【答案点睛】本题主要考查空间中线线,线面,面面的位置关系,以及充要条件的判断,考查学生综合运用知识的能力.解决充要条件判断问题,关键是要弄清楚谁是条件,谁是结论.11、C【答案解析】逐一分析选项,根据函数的对称中心判断;利用导数判断函数的单调性;先求函数的导数,若满足条件,则极值点必在区间;利用导数求函数在给定区间的最值.【题目详解】为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确由题意知因为当时,又,所以在上恒成立,所以函数在上为单调递减函数,正确由题意知,当时,此时在上为增函数,不合题意,故令,解得因为在上不单调,所以在上

11、有解,需,解得,正确令,得根据函数的单调性,在上的最大值只可能为或因为,所以最大值为64,结论错误故选:C【答案点睛】本题考查利用导数研究函数的单调性,极值,最值,意在考查基本的判断方法,属于基础题型.12、A【答案解析】设,由得:,由复数相等可得的值,进而求出,即可得解.【题目详解】设,由得:,即,由复数相等可得:,解之得:,则,所以,在复平面对应的点的坐标为,在第一象限.故选:A.【答案点睛】本题考查共轭复数的求法,考查对复数相等的理解,考查复数在复平面对应的点,考查运算能力,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13、1【答案解析】利用二项式定理得到,将89写成1+

12、88,然后再利用二项式定理展开即可.【题目详解】,因展开式中后面10项均有88这个因式,所以除以的余数为1.故答案为:1【答案点睛】本题考查二项式定理的综合应用,涉及余数的问题,解决此类问题的关键是灵活构造二项式,并将它展开分析,本题是一道基础题.14、【答案解析】取基向量,然后根据三点共线以及向量加减法运算法则将,表示为基向量后再相乘可得【题目详解】如图:设,又,且存在实数使得,故答案为:【答案点睛】本题考查了平面向量数量积的性质及其运算,属中档题15、【答案解析】根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果

13、.【题目详解】由约束条件可得可行域如下图阴影部分所示: 将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【答案点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.16、18【答案解析】将已知已知转化为的形式,化简后求得,利用等差数列前公式化简,由此求得表达式的值.【题目详解】因为,所以.故填:.【答案点睛】本题考查等差数列基本量的计算,考查等差数列的性质以及求和,考查运算求解能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【答案解析】由不存

14、在逆矩阵,可得,再利用特征多项式求出特征值3,0,利用矩阵乘法运算即可.【题目详解】因为不存在逆矩阵,所以.矩阵的特征多项式为,令,则或,所以,即,所以,所以【答案点睛】本题考查矩阵的乘法及特征值、特征向量有关的问题,考查学生的运算能力,是一道容易题.18、(1)单调递增区间为,;单调递减区间为;(2),;(3)证明见解析【答案解析】(1)由的正负可确定的单调区间;(2)利用基本不等式可求得时,取得最小值,由导数的几何意义可知,从而求得,求得切点坐标后,可得到切线方程;(3)由极值点的定义可知是的两个不等正根,由判别式大于零得到的取值范围,同时得到韦达定理的形式;化简为,结合的范围可证得结论.

15、【题目详解】(1)由题意得:的定义域为,当时,当和时,;当时,的单调递增区间为,;单调递减区间为.(2),所以(当且仅当,即时取等号),切线的斜率存在最小值,解得:,即切点为,从而切线方程,即:(3),分别在,处取得极值,是方程,即的两个不等正根则,解得:,且,即不等式成立【答案点睛】本题考查导数在研究函数中的应用,涉及到利用导数求解函数的单调区间、导数几何意义的应用、利用导数证明不等式等知识;本题中证明不等式的关键是能够通过极值点的定义将问题转变为一元二次方程根的分布问题.19、(),曲线 ()【答案解析】试题分析:(1)消去参数可得直线的直角坐标系方程,由可得曲线的直角坐标方程;(2)将(

16、为参数)代入曲线的方程得:,利用韦达定理求解即可.试题解析:(1),曲线,(2)将(为参数)代入曲线的方程得:.所以.所以.20、(1)(x1)2y24,直线l的直角坐标方程为xy20;(2)3.【答案解析】(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【题目详解】(1)由曲线C的参数方程 (为参数) (为参数),两式平方相加,得曲线C的普通方程为(x1)2y24;由直线l的极坐标方程可得coscossinsincossin2,

17、即直线l的直角坐标方程为xy20.(2)由题意可得P(2,0),则直线l的参数方程为 (t为参数)设A,B两点对应的参数分别为t1,t2,则|PA|PB|t1|t2|,将 (t为参数)代入(x1)2y24,得t2t30,则0,由韦达定理可得t1t23,所以|PA|PB|3|3.21、(1)见解析;(2).【答案解析】(1)分两种情况讨论:两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【题目详解】(1)由于点在半圆上,则.当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,此时;当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),.综上所述,;(2)根据题意得、,令,则,所以,当时,当时,.因此,的取值范围是.【答案点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论