2022年四川省内江市威远县中学数学高二第二学期期末质量跟踪监视试题含解析_第1页
2022年四川省内江市威远县中学数学高二第二学期期末质量跟踪监视试题含解析_第2页
2022年四川省内江市威远县中学数学高二第二学期期末质量跟踪监视试题含解析_第3页
2022年四川省内江市威远县中学数学高二第二学期期末质量跟踪监视试题含解析_第4页
2022年四川省内江市威远县中学数学高二第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()ABCD2设函数f(x

2、)xlnx的图象与直线y2x+m相切,则实数m的值为()AeBeC2eD2e3甲、乙、丙、丁四名同学组成一个4100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是( )A甲B乙C丙D丁4已知正三棱柱的所有顶点都在球的球面上,且该正三棱柱的底面边长为,体积为,则球的表面积为( )ABCD5算数书竹简于上世纪八十年代在湖北省江陵县张家山出土,这

3、是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长与高,计算其体积的近似公式它实际上是将圆锥体积公式中的圆周率近似取为3.那么近似公式相当于将圆锥体积公式中的近似取为( )A B C D6高二(3)班共有学生56人,现根据座号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、31号、45号同学在样本中,那么样本中还有一个同学的座号是A15B16C17D187下列命题中,正确的命题是( )A若,则B若,则不成立C,则或D,则且8抛物线的焦点到双曲线的渐近线的距离是( )ABCD9已知命题,;命题在中,若,则下

4、列命题为真命题的是( )ABCD10将曲线按照伸缩变换后得到的曲线方程为( )ABCD11若,则A70B28C26D4012某研究型学习小组调查研究学生使用智能手机对学习的影响部分统计数据如下表:使用智能手机不使用智能手机合计学习成绩优秀4812学习成绩不优秀16218合计201030附表:经计算,则下列选项正确的是A有的把握认为使用智能手机对学习有影响B有的把握认为使用智能手机对学习无影响C有的把握认为使用智能手机对学习有影响D有的把握认为使用智能手机对学习无影响二、填空题:本题共4小题,每小题5分,共20分。13已知两不共线的非零向量满足,则向量与夹角的最大值是_.14观察下列算式:,则_

5、15已知实数满足,则的最小值为_16直线分别与x轴,y轴交于A,B两点,点P在抛物线上,则面积的最小值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)随着共享单车的蓬勃发展,越来越多的人将共享单车作为短距离出行的交通工具.为了解不同年龄的人们骑乘单车的情况,某共享单车公司对某区域不同年龄的骑乘者进行了调查,得到数据如下:年龄152535455565骑乘人数958065403515(1)求关于的线性回归方程,并估计年龄为40岁人群的骑乘人数;(2)为了回馈广大骑乘者,该公司在五一当天通过向每位骑乘者的前两次骑乘分别随机派送一张面额为1元,或2元,或3元的骑行券.已

6、知骑行一次获得1元券,2元券,3元券的概率分别是,且每次获得骑行券的面额相互独立.若一名骑乘者五一当天使用了两次该公司的共享单车,记该骑乘者当天获得的骑行券面额之和为,求的分布列和数学期望.参考公式:,.参考数据:,.18(12分)在直角坐标系中,以原点为极点,以轴正半轴为极轴,圆的极坐标方程为(1)将圆的极坐标方程化为直角坐标方程;(2)过点作斜率为1直线与圆交于两点,试求的值19(12分)已知函数(1)讨论函数的单调性;(2)设函数,当时,对任意的恒成立,求满足条件的最小的整数值20(12分)如图,已知三棱柱,平面平面,分别是,的中点.(1)证明:;(2)求直线与平面所成角的正弦值.21(

7、12分)已知函数()当时,求在上的零点个数;()当时,若有两个零点,求证: 22(10分)已知命题方程表示圆;命题双曲线的离心率,若命题“”为假命题,“”为真命题,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.2、B【解析】设切点为(s,t),求得f(x)的导数,可得切线的斜率,由切线方程可得s,t,进而求得m【详解】设切点为(s,t),f(x)xlnx的导数为f(x)1+lnx,可得切线的斜率为1+lns2,解得se,则teln

8、ee2e+m,即me故选:B【点睛】本题考查导数的运用:求切线方程,考查直线方程的运用,属于基础题3、C【解析】跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意【详解】由题意得乙、丙均不跑第一棒和第四棒,跑第三棒的只能是乙、丙中的一个,当丙跑第三棒时,乙只能跑第二棒,这时丁跑第一棒,甲跑第四棒,符合题意;当乙跑第三棒时,丙只能跑第二棒,这里四和丁都不跑第一棒,不合题意故跑第三棒的是丙故选:C【点睛】本题考查推理论证,考查简单的合情推理等基础知识,考查运算求解能力、分析判断能力,

9、是基础题4、C【解析】正三棱柱的底面中心的连线的中点就是外接球的球心,求出球的半径即可求出球的表面积【详解】由题意可知,正三棱柱的底面中心的连线的中点就是外接球的球心,底面中心到顶点的距离为,设正三棱柱的高为,由,得,外接球的半径为,外接球的表面积为:故选C【点睛】本题主要考查了正三棱柱的外接球的表面积的求法,找出球的球心是解题的关键,考查空间想象能力与计算能力,是中档题5、B【解析】试题分析:设圆锥底面圆的半径为,高为,依题意,所以,即的近似值为,故选B.考点:算数书中的近似计算,容易题.6、C【解析】试题分析:由系统抽样的特点等距离可得,3号、17号、号、号同学在样本中.考点:系统抽样.7

10、、C【解析】A根据复数虚部相同,实部不同时,举例可判断结论是否正确;B根据实数的共轭复数还是其本身判断是否成立;C根据复数乘法的运算法则可知是否正确;D考虑特殊情况:,由此判断是否正确.【详解】A当时,此时无法比较大小,故错误;B当时,所以,所以此时成立,故错误;C根据复数乘法的运算法则可知:或,故正确;D当时,此时且,故错误.故选:C.【点睛】本题考查复数的概念以及复数的运算性质的综合,难度一般.(1)注意实数集是复数集的子集,因此实数是复数;(2)若,则有.8、C【解析】求得抛物线的焦点,双曲线的渐近线,再由点到直线的距离公式求出结果.【详解】依题意,抛物线的焦点为,双曲线的渐近线为,其中

11、一条为,由点到直线的距离公式得.故选C.【点睛】本小题主要考查抛物线的焦点坐标,考查双曲线的渐近线方程,考查点到直线的距离公式,属于基础题.9、C【解析】判断出命题、的真假,即可判断出各选项中命题的真假,进而可得出结论.【详解】函数在上单调递增,即命题是假命题;又,根据正弦定理知,可得,余弦函数在上单调递减,即命题是真命题综上,可知为真命题,、为假命题.故选:C.【点睛】本题考查复合命题真假的判断,解答的关键就是判断出各简单命题的真假,考查推理能力,属于中等题.10、B【解析】根据伸缩变换的关系表示已知函数的坐标,代入已知函数的表示式得解.【详解】由伸缩变换,得, 代入, 得,即 选B【点睛】

12、本题考查函数图像的伸缩变换,属于基础题.11、C【解析】令tx3,把等式化为关于t的展开式,再求展开式中t3的系数【详解】令tx3,则(x2)53x4a0+a1(x3)+a2(x3)2+a3(x3)3+a4(x3)4+a5(x3)5,可化为(t+1)53(t+3)4a0+a1t+a2t2+a3t3+a4t4+a5t5,则a310361故选C【点睛】本题主要考查了二项式定理的应用,指定项的系数,属于基础题12、A【解析】根据附表可得,所以有的把握认为使用智能手机对学习有影响,选A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设向量夹角为,由余弦定理求得,再利用基本不等式求得取得最

13、小值,即可求得的最大值,得到结果.【详解】因为两非零向量满足,设向量夹角为,由于非零向量以及构成一个三角形,设,则由余弦定理可得,解得,当且仅当时,取得最小值,所以的最大值是,故答案是.【点睛】该题考查的是有关向量夹角的大小问题,在解题的过程中,涉及到的知识点有余弦定理,基本不等式,注意当什么情况下取得最值,再者就是需要明确角取最大值的时候其余弦值最小.14、142;【解析】观察已知等式的规律,可猜想第行左边第一个奇数为后续奇数依次为:由第行第一个数为,即:,解得:,可得:,即可得解.【详解】第行等号左边第一个加数为第个奇数,即,于是第一个加数为,所以第个等式为,【点睛】本题主要考查归纳与推理

14、,猜想第行左边第一个奇数为进而后续奇数依次为:是解题的关键.15、-5【解析】分析:画出约束条件所表示的平面区域,结合图象,把目标函数平移到点A处,求得函数的最小值,即可详解:由题意,画出约束条件所表示的平面区域,如图所示,由目标函数,即,结合图象可知,当直线过点在轴上的截距最大,此时目标函数取得最小值,又由,解得,代入可得目标函数的最小值为点睛:线性规划问题有三类:(1)简单线性规划,包括画出可行域和考查截距型目标函数的最值,有时考查斜率型或距离型目标函数;(2)线性规划逆向思维问题,给出最值或最优解个数求参数取值范围;(3)线性规划的实际应用,本题就是第三类实际应用问题.16、1【解析】通

15、过三角形的面积公式可知当点P到直线AB的距离最小时面积最小,求出与直线2xy20平行且为抛物线的切线的直线方程,进而利用两直线间的距离公式及面积公式计算即得结论【详解】依题意,A(2,0),B(0,2),设与直线x+y+20平行且与抛物线相切的直线l方程为:x+y+t0,联立直线l与抛物线方程,消去y得:y2+4y+4t0,则1616t0,即t1,直线x+y+20与直线l之间的距离d,Smin|AB|d1故答案为1【点睛】本题考查直线与圆锥曲线的关系,考查运算求解能力,数形结合是解决本题的关键,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)大致为55人(2

16、)分布列见解析,【解析】分析:(1)根据题意求得,代入公式求得回归直线方程,令代入方程可估计年龄为40岁人群的骑乘人数;(2)由题意的所有可能取值为分别求出相应的概率,由此能求出的分布列和数学期望详解:(1)由题意可知,代入公式可得, ,所以线性回归方程为,令可得,故年龄为40岁人群的骑乘人数大致为55人. (2)由题意可知的所有可能取值为,其相应概率为:, 所以的分布列为:X23456P. 点睛:本题考查回归直线方程的求法及其应用,考查离散型随机变量的分布列及数学期望的求法及应用,考查古典概型等基础知识,考查运算求解能力,是中档题18、(1);(2)【解析】()根据直线参数方程的一般式,即可

17、写出,化简圆的极坐标方程,运用cos=x,sin=y,即可普通方程;()求出过点P(2,0)作斜率为1直线l的参数方程,代入到圆的方程中,得到关于t的方程,运用韦达定理,以及参数t的几何意义,即可求出结果【详解】()由得:,即,C的直角坐标方程为:()设A,B两点对应的参数分别为,直线和圆的方程联立得:,所以,所以,【点睛】本题考查直线的参数方程、以及极坐标方程与普通方程的互化,同时考查直线参数方程的运用,属于中档题19、(1)见解析(2)【解析】(1)用导数讨论单调性,注意函数的定义域;(2)写出的具体形式,然后分离参数,进而讨论函数最值的范围,得出整数参量的取值范围.【详解】解:(1)由题

18、意,函数的定义域为,当时,单调增区间为:当时,令,由,得,的单调递增区间为,的单调递减区间为:(2)由,因为对任意的恒成立当时对任意的恒成立,只需对任意的恒成立即可构造函数,且单调递增,一定存在唯一的,使得即,.单调递增区间,单调递减区间的最小的整数值为【点睛】本题考查用导数讨论函数单调性和函数的最值问题,其中用构造函数,属于函数导数不等式的综合题,难度较大20、 (1)见解析;(2)【解析】(1)建立空间直角坐标系,设,从而确定与 的坐标,通过求二者的数量积证明.(2)结合第一问,计算出直线的方向向量和平面的法向量,结合线面角余弦值和诱导公式即可求直线与平面所成角的正弦值.【详解】(1)证明:在底面 内作,以点为坐标原点,、 的方向分别为、轴建立空间直角坐标系,不妨设 则, 由 可求得 的坐标为利用中点坐标公式可求出 , 即(2)解:由第一问可知: .设平面 的法向量为 则,不妨设 则,此时 设直线与平面所成角为,则 即直线与平面所成角的正弦值为 .【点睛】本题考查了空间几何中的线线垂直的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论