气动系统建模仿真_第1页
气动系统建模仿真_第2页
气动系统建模仿真_第3页
气动系统建模仿真_第4页
气动系统建模仿真_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、气压控制伺服系统的数学建模及仿真模型建立关于气动伺服系统的数学建模,主要是通过分析系统的运动规律,运用一些己知的定理和 定律,如热力学定律、能量守恒定律、牛顿第二定理等,通过一些合理而必要的假设和简化, 推导出系统被控对象的基本状态方程,并将其在某一工作点附近线性化,从而获得的一个近似 的数学模型。虽然这些模型不是很准确,但还是能够反映出气动伺服控制系统的受力和运动规 律,并且借此可以分析出影响系统特性的主要因素,给系统的进一步分析和控制提供依据和指 导.另外,利用Simulink工具包可以不受线性系统模型的限制,能够建立更加真实的非线性系 统,同时其模型分析工具包括线性化和精简工具。因此 ,

2、本文在数学模型的基础之上,利用 Simulink对所研究的气压力控制系统尝试建立一个非线性数学模型,并对该模型进行计算机仿 真。由于气动系统的非线性,如气体的压缩性较大,且在气缸的运动过程中容腔中气体的各参 数和变量是实时变化的,所以对气动系统的精确建模是比较困难的。所以为了建立系统的模型, 我们对控制系统作一些合理的假设,来简化系统的数学模型.假设如下:(1)气动系统中的工作介质一空气为理想气体;(2)忽略气缸与外界和气缸两腔之间的空气泄漏;(3)气动系统中的空气流动状态为等嫡绝热过程;(4)气源压力和大气压力恒定;(5)同一容腔中的气体温度和压力处处相等.1)比例阀的流量方程在实际的伺服控

3、制系统中气体的流动过程十分复杂,气动元件研究中使用理想气体等嫡通 过喷管的流动过程来近似代替。一般计算阀口的流量时采用Sanville流量公式:厂itPq厂itPqm = AP.RT k 1 0.528 P W1Pq = APq = AP六:一酒-RT (k +1)0W P W0.528Ps其中:P一为阀口上游压力;sP 为阀口下游压力。 d0。528为临界压力比.当阀口上、下游的压力比小于等于0。528时,气体通过阀口的流量达到最大值,即气体以音速流动,此时下游压力的降低不会使质量流量再增加,出现了所谓的“壅 塞现象,这种现象使气体流经阀时具有很强的非线性,也是以空气作为传动介质系统中的固有

4、 特征.当控制阀上、下游压力之比大于0。528小于1时,通过阀口的气体质量流量不仅取决于阀 的结构,而且还取决于阀口上、下游压力,此时通过阀口的气体流动状态为亚音速流动26。由于气动元件内部的结构比较复杂,不同于渐缩喷管.这使流动的音速和亚音速分界点不是 压力比为0.528的点。为解决这个问题,流量计算的新的发展趋势是通过临界压力比b来计算描 述气动元件的过流能力,并用这个参数来计算经过比例阀的流量.因此,比例阀进出气口的流量方程为:Qmlk-1:k 2RT k Qmlk-1:k 2RT k -1(P 1顷J sk1k2kRT (k +1)b P 1PsP0 bPs(11)Q =Q =m 2(

5、12)Pb o 1P20 t bP2其中:Cd-流量系数3阀口面积梯度X 一阀芯位移Ps、P气源压力、大气压力 0P1、P2-气缸左、右腔压力利用Simulink工具对进气口式进行建模,如图1-1所示,对其子系统封装如图1-2所示。斗TI-图1-1阀进口流量方程Case Action斗TI-图1-1阀进口流量方程Case Action图1-2阀进口流量方程封装模块同理可对出气口进行建模并封装子系统。2)压力微分方程根据质量守恒定律,假定工作介质为连续的,储藏到某控制体中去的质量的储藏率应该等 于流入的质量流量减去流出的质量流量。即:Z m Ml dM=冬=p 竺+vd 入 出 dt dt dt

6、 dt将气体状态方程代入上式并化简可得:dMdt RTdMdt RT1 ( dV V dp假定T1=T2=T,忽略温度变化的影响,将气缸两腔参数分别代入上面公式,得:心 k (RTQ 心 k (RTQ - PA竺) dP _ Xml 11 dt dV1(1-3)如k(RTQ + PA 竺)dPm 22 2 dt2 =dtV2(1-4)其中:A1、A2气压缸左、右腔面积V1、V2气缸左、右两腔体积Qm1、Qm2-气缸进出左、右两腔的流量x气缸活塞位移用Simulink对(3)式建模如图1-3所示,子系统封装如图1 -5所示。同理对 式进行建模如图1-4所示,子系统封装如图1-6。dP1/dt=(

7、R+rQm1-P1+A1+dP1/dt=(R+rQm1-P1+A1+u)/V1Ainitial p osrti u ri图1 3气缸左腔流量压力 方程dP2/dt=(RT-Qm2+P2A-A2Au)/V2AddZi niii a I pgHim图14气缸右腔流量压力 方程Cylinder Pr-ssunCy I i n d e r Pressu erl图1dP2/dt=(RT-Qm2+P2A-A2Au)/V2AddZi niii a I pgHim图14气缸右腔流量压力 方程Cylinder Pr-ssunCy I i n d e r Pressu erl图16气缸2腔流量压力方程封装模 块、

8、模块,、3)气缸活塞的力平衡方程根据牛顿第二定律可得到气缸的力平衡方程如下:(1-5)P1A1-P2A2 Ff= m 骸 +Ky+ F(1-5)其中:Ff一作用在气缸上的摩擦力F一作用在气缸上的的外力负载m气缸上运动部件的质量及负载质量总和K一负载弹簧刚度根据力平衡方程(5)式在Simulink中建立模型如图17所示,进行子模型封装如图18所示.图1-7气缸力平衡方程Ciilindcr Dirrumics:图1-8气缸力平衡方程封装模块4)气缸摩擦力模型摩擦力是影响气动伺服控制系统性能的重要因素,摩擦力的大小、方向取决于滑动摩擦副 的材料、表面粗糙度、润滑条件、受力大小及温度等因素。气缸的摩擦

9、力对气动伺服系统的影 响最大,特别是气缸低速运动时更为明显,所以研究摩擦力的影响因素对系统的建模至关重要. 气缸摩擦力是非线性的,通常将气缸摩擦力分为动摩擦力和静摩擦力,其中动摩擦力又分为库伦 摩擦力和粘性摩擦力。当气缸在静止时摩擦力较大,而它一旦开始运动时,摩擦力随着速度增 加急剧下降,在达到一定速度,即临界速度后又随着速度的上升而增加.这一摩擦特性产生了气 缸在低速运动时的爬行现象,同时影响气动伺服定位系统的性能。当前工程上位置控制系统中应用较为广泛的气缸摩擦力模型是Stribeck摩擦模型,其摩擦 力与速度关系曲线如图1-9所示,摩擦力首先随着速度的增加而降低,到一定速度后又随着速度的上

10、升而下降,其公式为:F = (F + (F - F)e日)sgn( u) + Cu其中:Fs静摩擦力Fc库仑摩擦力u活塞速度us-Stribeck分离速度8待定系数,介于0.5到2之间图19气缸Stribeck模型摩擦力与速度关系曲线Stribeck摩擦模型较好地描述了低速下的摩擦力的行为,用一个衰减指数项体现了负斜率 摩擦现象。但是Stribeck模型没有考虑到摩擦滞后、变化的临界摩擦力等非线性因素带来的影 响,在速度穿越零时,摩擦力发生突变,并且突变值较大,在力控制系统中直接反馈到的变量是 力,摩擦力的突变会导致反馈力发生突变,进而引发系统高频振荡,不符合实际情况。实际情 况中,摩擦力还具

11、有时间依赖性,即摩擦记忆的特性.摩擦记忆就是接触表面间相对运动速度发 生改变时,摩擦力滞后一段时间才会发生变化的现象,而LuGue模型较好的考虑了这一方面的因 素,加入了摩擦力的记忆特性,避免了因为摩擦力突变而产生的高频振荡现象。因此本仿真模 型中采用LuGu e模型,LuGue模型不仅考虑了 Stribeck速度负斜率影响,并且能反映预滑动位移、摩擦滞后、变化的临界摩擦力和粘性滑动等非线性特性,是目前较为完善的一个模型,具有较高的精度.LuGre模型将摩擦的接触面看成是在微观下具有随机行为的弹性鬃毛,摩擦力由鬃毛的挠(16)(17)(16)(17)(18)空=v 一业 dtg(v) a0 g

12、 (v) = F + (F - F)e4:I其中:v一摩擦表面的相对速度Z粘滞状态下相对运动表面间的相对变形量a移动前的微观变形量z的刚度a1dz/dt的动态阻尼a2一粘性摩擦系数根据(1-6)、(17) (18)三个方程表述的摩擦力模型在Simulink中建模如图1 10所示,然后进行子系统封装.图1-10图1-10气缸LuGre模型摩擦力方程(完整word版)气动系统建模仿真由LuGre模型作出气缸在低速时的摩擦力与速度的关系如图1-11所示.此模型中的摩擦力具 有记忆特性,在速度过零点时不会发生突变,而是有一定的滞后,在速度增加到反方向的某一个 值时才缓慢的回到零,不会产生高频振荡。并且

13、摩擦力随速度变化关系也满足Stribeck负效应, 符合摩擦力变化趋势,比较适合应用于气压力控制系统仿真模型中。图1-11气缸LuGre模型摩擦力与速度关系曲线上面已经对气压力控制系统的4个方程进行了建模,将4个子模型联系起来就可以完成对整 个系统的建模。气压力控制系统的线性化气压力伺服系统为比较复杂的非线性系统,特性也比较复杂,对其进行控制会比较困难,因 此对其进行线性化,虽然线性化不能准确的给出实际系统模型,但它对系统的定性分析提供了 一种有效的手段。下面针对系统的数学模型在某一工作点对系统进行线性化处理。首先对阀的流量方程(11)式(1-2)式进行线性化处理,由Sanville流量公式知

14、,阀的流 量方程仅是阀芯位移xv和气缸中气体压力P/口P2的函数,在工作点分别对这些变量取一阶偏微分 即可得出微分方程的近似线性化方程: Ki(2-1)Qm2= Km;Kc 2 乌式中:(完整word版)气动系统建模仿真(22)Kml8Qml8x o8Q.m2 Idx0vc1Qm2= Km;Kc 2 乌式中:(完整word版)气动系统建模仿真(22)Kml8Qml8x o8Q.m2 Idx0vc1dQm1ap1aQm2-ap2cp/ P 节 k s亡,2kRT (k +1)0.528 P 1Ps0 P 0.528scPd2-1k -1 k 2RT k -12 kP1 P2 :2kRT (k +

15、1)0.528 P 1Ps0 * 0.528s然后对压力微分方程进行线性化处理,对(1-3)式(14)式进行拉氏变换得出:P (s)s =1k (RTQ - P/ ys)m。io i1从而同理其中P (s)=也Q -kP AyV s m1 V 10 111( ) kRT kP (s)= Q -P A yV S m2 V 20 2(2-3)(2-4)匕=匕+ Ay,V = V- Ay气缸的力平衡方程:AP- A P -F-F = m性+ Ky1122 f dt 2因此线性化过程中可将摩擦力模在摩擦力模型中,有一部分与速度成正比的粘性摩擦力, 型简化为F = F + B v,则力平衡方程变为:因此

16、线性化过程中可将摩擦力模AP A P F-F = m 业 +AP A P F-F = m 业 +B 曳 +Ky1 12 2 jdt 2p dt进行拉氏变换,得AP (s) AP (s)一呈j = ms2y + B sy + Ky(2-5)112 2sP将式(2-1),(2-2),(2-3),(24)代入式(2-5),得D C kP A 2 kP A 2)ms 2 + B s + K + 10 i + 20 2 p I 匕 匕)sy =kRTA1Km + 华K2 VV )1可此求得由阀芯位移到气缸活塞位移的传递函数为:kRTA KkRTA K )v1 m1_V( kP A 2 kP A 2W+

17、202-匕 Vms 2 + B s + K +kRTAKm + kRTA, Km 21(mV、-4(K kP A 2 kP A 2 -40+ 20_2- m mV 1Bs 2 +is + +mmV )-0mV2在力控制系统中,被控制量是力,将输出力由力传感器转换为反馈电压信号与指令电压信 号相比较,得到偏差信号,此偏差信号经过控制器输入伺服阀,使伺服阀到气压缸的流量发生 变化,从而使输出力向着减小误差的方向变化。在力控制系统中,输出力F为:F =PAPA-F = m d2y +Ky+Fg 1 1 2 2 fdt2将上式进行拉氏变换,得(s)= (m s2 + K)y (s)s12B (K kP

18、 A 2 kP A 2) s 2 + s + + W1 + 202m S m mVmV /-JV2m2(kRTAK 1_ml +VkRTA K V K)又已知电压到阀芯位移的传递函数为二阶振荡环节,即G(s )= svYsv(s 22& s sv+ s + 1Ysv 2其中:3 V伺服阀固有频率z 伺服阀阻尼比K 伺服阀增益0综合各部分的传递函数假设,系统的开环传递函数可由下式表示:G (s) G (s) =(kRTAK1ml +VS_iiBs 2 +is + +mm2_ _J(K kP A 2 kP A 2) -401 + 20S m mV mV_KK(s 22& s 1)+二+1E sv2

19、 气 JKf为其他部分增益之积必须指出,在以上分析中,特别是对一些关系式的推演过程,没有考虑气流的泄漏影响;另 外,还忽略了连接管道的分布阻力和管道柔度的影响,即我们采用的是集中参数模型,把管路 内阻力归并到控制滑阀口处,把弹性变形归并到气缸内的活塞位移和气体的容积变化.这种分析 和分析液压伺服控制系统一样,也是在控制阀阀芯位移和气缸活塞位移变化在中间平衡位置附 近的小扰动变化范围内进行的,即以阀的稳态特性的线性化为基础的.在此引入气压弹簧的概念,假定一个理想的无摩擦无泄漏的气压缸,两个工作腔内充满压力 气体并被完全封闭。由于气体具有可压缩性,当活塞受外力的作用时,活塞可以在气压缸内移 动,活

20、塞的移动使气动缸内的一腔压力升高,另一腔压力降低。根据等嫡的假定条件,体积弹性模数p与稳态时的腔内工作压力p成正比,即p = kp。eie i则有P P = kP Ay1 V 10ik ,P = 一 P20 Ay2则气压弹簧刚度匕满足AP i -kP A2 kP A210+ 20匕 V同液压弹簧一样,气压弹簧只有在动态时才有意义,在稳态时不存在。假设气缸在初始位置处于平衡位置,即apio=ap2o,则(11 p 10K = kP A p 10111 l2 当活塞处在中间位置时,l当活塞处在中间位置时,l1=l2=l/2,此时4kP/(2 2 K = kP A -4kP/p 10kll p 10

21、上面的式子表明,气压弹簧刚度是活塞位置和工作点压力的函数,最低刚度出现在活塞行程 的中间位置,此时气压固有频率最低.当活塞偏离中间位置时,气压弹簧刚度增大,固有频率将 增加。由传递函数可知,气压系统与液压系统的传递函数具有相同的形式,其动态特征参数也很 相似。明显的差别就是可压缩工作介质,体积弹性模数p完全取决于稳态时的腔内工作压力p和 气体状态变化指数,即根据等嫡的假定条件,p = kp,因此,p的提高受到限制,初始工作压力 过高,不仅带来安全问题,且系统元件密封液不易解决。常规工业中使用的气体压力很低,因 而气压伺服系统的固有频率和刚度都很低,和液压系统相比,响应速度慢,延滞时间长。在系统

22、 设计时,应在工艺允许的条件下,尽量采用高的供气压力和尽可能短的连接管道,以提高伺服系 统的输出刚度.系统仿真分析在力控制系统开环传递函数中G (s) G (s) =(kRTAK1ml +(VB S 2 + 为 + +3_m2J(K kP A 2 kP A 2) -401 + 20m mV mV 12Ksf2& s+1 Jsv2m f2 f s22&2m f2 f s22&sE+kX svsvVV J sv .s2 2& s+ 二 +12V 00其中Kf为其他部分增益之积由此可见,系统传递函数由比例环节,二阶微分环节,积分环节和两个振荡环节共同组成 的。二阶微分环节和振荡环节的转折频率分别为负

23、载固有频率3系统固有频率30,以及伺服 阀固有频率3,并且3 3。下面分析下各个参数对系统传递函数的影响o = K为负载固有频率,它随着负载弹簧刚度的增大而增大,随负载质量的增大而减m m小。K kP A2 kP A 21K kP A kP A s左任隔依p久隔依x g主田人aa洲右/-o =+ 10 L + 20 h =.+ 10 1+ 20 2为气压弹簧与负载弹簧并联耦合的刚度与0 m mV mV m ml ml负载质量形成的动力机构的固有频率。它不仅与负载有关,还与气压弹簧刚度有关,气缸两腔面 积越大,压强越大,气压弹簧刚度越大,并且气压弹簧刚度还受到活塞位置的影响。c) g = Bp

24、=B为动力机构的阻尼比。粘性阻尼越大,负载质量越02 Km +10 1* + 20 2*七 ll2小,系统阻尼比越大。负载弹簧刚度越大,气缸两腔面积越大,压强越大,系统阻尼比越小,系 统阻尼比也受到活塞位置的影响。d) K = m1 +竺一m2 K K -一-一-一为系统增益。负载弹簧刚度越大,伺服阀0 ll sv f kP A kP Alb2J K +10 1 +20 2l1l2及控制器增益越大,系统增益越高。气缸两腔压力、面积越大,系统增益越低.系统增益也因活 塞位置的不同而不同。(完整word版)气动系统建模仿真 由上面分析知,系统的传递函数会随着活塞位置的变化而变化,所以我们在分析系统

25、稳定 性的时候,要选取系统最不容易稳定的点进行分析,使这一点稳定,系统才能稳定。以下分具体情况进行讨论。1)负载固有频率3,大于伺服阀固有频率、系统的伯德图如图3-1所示,在伺服阀固有频率3 处斜率变为一60dB/10oct,通过负载固有 频率时斜率变为一20dB/10oct,过了3时斜率又恢复为一60dB/10oct。由于这种情况下3较大, 负载弹簧刚度也一般很大,大于气压弹簧固有频率,因此气与3距离较近,且斜率一直为负值, 因此3处的谐振峰值不会高于3 sv处幅值,因此谐振峰值不是导致系统不稳定的原因。由伯德图可以看出,此时相角穿越频率略小于伺服阀固有频率3sv,但是相角穿越频率处的 幅值

26、为正值,幅值裕度为负,系统不稳定,而系统增益是导致不稳定的原因。此时穿越频率较大, 快速性较好,而降低系统的穿越频率有利于系统的稳定性,同时快速性也能满足要求。因此只 需采用比例调节使幅值穿越频率降到小于相角穿越频率,使系统的幅值裕度和相角裕度为正值, 系统稳定性较好,系统快速性受到的影响也不大。随着系统各个参数变化,系统增益也发生变 化,因此比例系数也要相应的发生变化.校正后的系统伯德图如图3-2所示.10Bode DiagramFrom: simpneumatic/Conatant (pt. 1) To: Cylinder Dynamics (pt. 4)O.III10 13io310Bo

27、de DiagramFrom: simpneumatic/Conatant (pt. 1) To: Cylinder Dynamics (pt. 4)O.III10 3。按上面的Simulink 模型进行仿真,力响应曲线为图33,此时系统不稳定,对此进行比例控制,比例系数为K=0.01 p 此时力响应曲线如图34所示,系统稳定。图33力响应曲线图22DD图33力响应曲线图22DD颂。16DD1GDD1颂ionn800600砌muo 口u a 4 qe a.B i 1.2.a i.e 1 b 2图3-4比例校正后的力响应曲线图下面分析各个参数在这种情况下对稳定性的影响。a)质量负载m的影响根据传

28、递函数的公式知,m的大小影响负载固有频率,系统固有频率及阻尼比,但是对系统 增益没有影响。m的增大使负载固有频率和系统固有频率减小,使3皿向3靠近,并且使系统的(完整word版)气动系统建模仿真 阻尼比减小,谐振峰值增加。因此,在其他条件不变的情况下,增大巾不利于系统的稳定。但是m的增大如果在一定范围内,即负载固有频率不低于伺服阀固有频率,则系统可以通过比例调节 达到稳定。b)负载弹簧刚度K的影响根据传递函数的公式知,K的大小影响负载固有频率、系统固有频率、阻尼比及其系统增益。 K的增大使负载固有频率、系统固有频率增加,并且距离靠近,影响可以近似抵消,使斜振频率 远离伺服阀固有频率,但是系统阻

29、尼比减小,由于谐振峰值不是影响稳定性的主要原因,对系 统影响较小。K值越大,系统增益越大,但是系统增益与K的关系并不是线性的,K值越大,增益 变化越慢。总体来说,K的增加对系统的影响是多方面的,在负载固有频率不低于伺服阀固有频 率的范围内,总体影响较小.c)气缸两腔压力及面积的影响气缸两腔压力及面积影响系统固有频率、阻尼比及系统增益.气缸两腔面积、压力越大,系 统固有频率越大,阻尼比越小,系统增益越小。在负载固有频率不低于伺服阀固有频率的前提下, 负载弹簧一般较大,系统固有频率与负载固有频率距离较近,阻尼比的降低不会对稳定性造成 太大的影响,而系统增益的降低幅度也很小,总体来说对系统稳定性影响

30、不大。d)活塞位置及行程的影响活塞的位置影响系统固有频率,阻尼比及系统增益.活塞行程越长,越靠中间,系统固有频 率越小,阻尼比越大.在负载固有频率不低于伺服阀固有频率的前提下,负载弹簧刚度一般较大,而引起的固有频率3及其增益部分的好: 炒a变化较小,因此活塞行程越长,越靠近中 K 1112间系统的增益K =( kRTKmi + kRTKm 21K K 7 K 1越小,总体来说有利于系统的稳定.0 II sv f kP A kP A1 112 K + T + 20 2e) 摩擦阻尼B的影响阻尼影响系统的固有频率,B阻尼影响系统的固有频率,B越大,与伺服阀固有频率间距越大,谐振峰值对系统的影响较小

31、,此时阻尼比的影响也较小。但是负 载固有频率与伺服阀频率较接近时,谐振峰值对系统稳定性影响稍大,需进一步降低比例系数, 此时增大Bp,系统稳定性变好,能提高比例系数,提高系统的响应速度,得到较好的响应特性。因此,在这种情况下,增益的变化对系统稳定性的影响较大,因此主要考虑参数变化对系统 增益的影响.2)负载固有频率小于伺服阀频率此时系统的伯德图如图35所示,在负载固有频率气处斜率变为+20dB/10oct,通过动力 机构固有频率时斜率变为一20dB/10oct,过了伺服阀固有频率3 时斜率变为-60dB/10oct。如 图所示,相角穿越频率略大于伺服阀固有频率,并且由于3与3距离越远,相角穿越

32、频率越靠 近伺服阀固有频率3,相角穿越频率幅值裕度仍为负值,因此考虑像上面一样采用比例控制将 系统增益降低,使得幅值裕度和相角裕度为正,比例校正后的系统伯德图如图36所示。校正 后系统的幅值裕度和相角裕度都为正值,因此系统是稳定的。但是如图所示,校正后系统的谐振 峰值越过了零分贝线,这会使系统产生超调和震荡,并且谐振峰值越大,调整时间越长。如果继 续降低比例系数将谐振峰值降到零分贝线一下,会使穿越频率大大降低,系统响应过慢,因此 只采用比例调节并不能达到较好的控制特性.Bode DiagramFrom; simpneumsitic/Canstant (pt. 1J Tq: Cylinder D

33、ynamics (pt.4) 100Bode DiagramFrom; simpneumsitic/Canstant (pt. 1J Tq: Cylinder Dynamics (pt.4) 1005050-1011010o o o o o o 9 A- 8 -1-1(Birlp由mlnlld1010Frequency trad/sec)图35气压力伺服系统开环伯德图Bode DiagramFrom: simpneumatic/Constant (pt. 1) To: Cylinder Dynamics (pt. 4)o o o o -o -u o o 5 5 o 9 9 s-1-1o o o

34、 o -o -u o o 5 5 o 9 9 s-1-1-270 L=10LL.10110Frequency (rad/sec)10图36比例校正后的气压力伺服系统开环伯德图以上面的仿真系统为例,将负载改为质量m=100kg,刚度K=1000000N/m。此时叫3,采用 比例调节P=0。01,将此模型进行simulink模型仿真,得到的力响应曲线如图36所示。图3-6力响应曲线图由上面的力响应曲线图可知,系统是稳定的,但是开始的时候有超调和震荡,系统响应特 性不好,因此只采用比例调节不能达到较好的控制效果。下面分析各个参数在这种情况下影响.a)质量负载m的影响根据传递函数的公式知,m的大小影响

35、负载固有频率,系统固有频率及阻尼比,但是对系统增 益没有影响。m的增大使负载固有频率和系统固有频率减小,阻尼比减小,谐振峰值增加。由于 在这种情况下谐振峰值是导致系统响应特性差的主要因素,因此,m越大,系统的动态特性越不 好。b)负载弹簧刚度K的影响根据传递函数的公式知,K的大小影响负载固有频率、系统固有频率、阻尼比及其系统增益。 K的增大使负载固有频率、系统固有频率增加,而气压弹簧刚度不变,因此负载固有频率与系统 固有频率靠近,有利于系统的稳定性,但是会使系统阻尼比减小,对谐振峰值的影响有二者共同 决定。K值越大,系统增益越大,但是系统增益与K的关系并不是线性的,K值越大,增益变化 越慢。c

36、)气缸两腔压力及面积的影响气缸两腔压力及面积影响系统固有频率、阻尼比及系统增益。气缸两腔面积、压力越大, 系统固有频率越大,阻尼比越小,系统增益越小,气压弹簧刚度越大。减小系统增益有利于系 统的稳定性,但是固有频率的增大和阻尼比的减小会使得谐振峰值增大。d)活塞位置及行程的影响活塞的位置影响系统固有频率,阻尼比及系统增益.活塞行程越长,越靠中间,系统固有频 率越小,阻尼比越大,系统的增益越小,总体来说有利于系统的响应特性。e)阻尼B的影响Bp越大,系统的阻尼比越大,谐振峰值越小,系统的超调量越小,调节时间越短,增大Bp 会使系统的响应特性变好。因此,在这种情况下,谐振峰值对系统响应特性的影响较

37、大,因此主要考虑参数变化对谐 振峰值的影响。为了使系统达到较好的特性,考虑像液压系统一样采用双惯性环节,在3。与3皿之间加入转 折频率为31的双惯性环节,因此必须先降低增益将机降到零分贝线一下,如图3-6所示。当负 载质量或刚度较大时,引起的谐振峰值也较大,采用较大转折频率的双惯性环节并不能完全将 谐振峰值降到零分贝线以下,因此必须降低双惯性环节的转折频率。考虑到阀的相角滞后,31 处的相角低于一180o,过低的转折频率可能会导致系统本身不稳定,如图3-7所示。为了使系统 有一定的稳定裕度,必须将31处的幅值降到零分贝线以下,这就会导致系统的增益进一步降低。 并且从稳定裕度的角度考虑,31越小,系统增益越低,响应速度越慢。所以,采用双惯性环节 很难达到较好的控制结果,在仿真系统中尝试加入双惯性环节,将31从小到大进行调试,并随之 调整增益,不能得到较好的控制特性。仿真结果证明,在气压力控制系统中,双惯性环节是不可Bude Diagr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论