版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息解题思路及步骤注意事项理解背景读懂题目所给的背景,理解统计图表各个量的意义对选项逐一判断对选项逐一判断,统计图表是否能得出该选项的结论,错误选项一般是概念错误、计算错误、以偏概全的错误等典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是( ).A月接待游客量逐月增加B年接待游客量逐年增加C各年的月接待游客
2、量高峰期大致在7,8月份D各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A选项错误,选A.2古典概型概率问题解题思路及步骤注意事项求基本事件总数m每个基本事件要求等可能,若是条件概率问题,在有条件则基本事件总数相对减少求事件A包含基本事件个数n确定A包含基本事件个数时要不重不漏代入公式求概率,事件A已经发生的条件下在事件B发生概率典例2:(2018全国2卷理科8)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如在不超过30的素数中,随机选
3、取两个不同的数,其和等于30的概率是A. B. C. D. 解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()0.8 B. 0.75 C. 0.6 D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p=0.60.753几
4、何概型问题解题思路及步骤注意事项求试验全部结果所构成区域长度(或面积或体积)明确表示实验结果的是一个变量、两个变量还是三个变量,它们分别用长度(或角度)、面积和体积来表示求构成事件A的区域长度(或面积或体积)确定构成事件A的区域长度(或面积或体积)代入公式求概率典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A. B. C. D.解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB中,而当他到达时间落在线段AC或DB时,才能保证他等车的
5、时间不超过10分钟,根据几何概型,所求概率P=.选B.4类似超几何分布的离散型随机变量分布列问题(古典概型求概率)解题思路及步骤注意事项写出随机变量可能取值明确随机变量取每一个值的意义求出随机变量取每个值的概率“从M个不同元素中不放回抽取(或同时抽取)n个元素”类型概率问题,用古典概型求概率写出分布列检验所有概率之和是否等于1求数学期望若服从超级和分布,则可带入公式快速求出5类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)解题思路及步骤注意事项写出随机变量可能取值明确随机变量取每一个值的意义求出随机变量取每个值的概率当有“把频率当成概率或用频率估计概率”条件时,“从
6、M个不同元素中抽出n个元素”类型概率问题就变成相互独立事件的问题写出分布列检验所有概率之和是否等于1求数学期望若服从二项分布,则可带入公式快速求出典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品. (1)从这10件产品中随机抽取3件,其中次品件数为X,求X分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y,求Y分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z,求Z分布列和期望.分析:第(1)问中,抽取产品的总体N=10
7、,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。第(2)问是从一箱产品中抽取,产品的总体N=100是明确的,但其中有多少件次品M是不明确的,有的同学根据样本可认为M=20,但违背了题目中的“用频率估计概率”这一条件,或者说没有理解这句话的含义,本质上就是概率的定义没有理解。根据概率定义,“用频率估计概率”这一条件应理解为:从这100件产品中任意抽取1件产品,该件产品是次品的概率是0.2,同时抽取3件等同于不放回抽1件3次,由于每次的概率都是0.2,因此,可以看成独立重复实验,该随机变量的分布为二项分布。第(3)问是从所生产的全部产品中抽取,而全部产品有多少件题目条件没给出,
8、这时总体N不明确(若总体N明确,就属于第(2)问情况),其中所含次品件数M自然也是不明确的。因此,类似的,在“用频率估计概率”这一条件,该随机变量的分布为二项分布。解:(1)x的可能取值为0,1,2,根据题意XH(10、2、3),所以x分布列为:,(2)Y的可能取值为0,1,2,3,根据题意YB(3,0.2),所以Y分布列为:,(3)Z的可能取值为0,1,2,3,根据题意ZB(3,0.2),所以Z分布列为:,以上分析用一个表归纳如下:抽取总体个数N总体中所含次品M个数随机变量分布类型明确明确超几何分布明确不明确二项分布不明确不明确二项分布从该例以看到,当保持不变,若N越大,每次不放回抽取,抽到
9、次品的概率与相差越小,因此,当N很大时,超几何分布可以近似看成二项分布。典例6:据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度调查人群应该取消应该保留无所谓在校学生2100人120人y人社会人士500人x人z人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06(1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取
10、多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,再平均分成两组进行深入交流,求第一组中在校学生人数X的分布列和数学期望解:(1)抽到持“应该保留”态度的人的概率为0.06,解得x=60,持“无所谓”态度的人数为3000210050012060=220,应在“无所谓”态度抽取220300(2)由(1)知持“应该保留”态度的一共有180人,在所抽取的6人中,在校学生人数为1201806=4,社会人士人数为601806=2,于是第一组在校学生人数X即X的分布列为:X123P131EX=11典例7(与函数结合):(2018全国1卷理科20)某工厂的某种产品成箱包装,每箱200件,每
11、一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立 (1)记20件产品中恰有2件不合格品的概率为,求的最大值点(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的作为的值已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用 (i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余
12、下的所有产品作检验?解:(1)20件产品中恰有2件不合格品的概率为.因此.令,得.当时,;当时,.所以的最大值点为.(2)由(1)知,.(i)令表示余下的180件产品中的不合格品件数,依题意知,即.所以.(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于,故应该对余下的产品作检验.6其他离散型随机变量分布列问题(频率估计概率,方案选择,随机变量取值意义,与其他知识结合)解题思路及步骤注意事项写出随机变量可能取值这类题重点考查是否理解随机变量取每一个值的意义求出随机变量取每个值的概率注意对随机变量所取的值表示多种的情况,多数情况由频率估计估计概率写出分布列检验所有概率之和
13、是否等于1求数学期望通过数学期望进行决策典例8(与函数结合):(2107全国3卷理科18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为瓶;如果最高气温位于区间,需求量为瓶;如果最高气温低于20,需求量为瓶为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列
14、;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?解:(1)易知需求量可取,;.则分布列为:(2) = 1 * GB3 当时:,此时,当时取到. = 2 * GB3 当时:,此时,当时取到. = 3 * GB3 当时,此时. = 4 * GB3 当时,易知一定小于 = 3 * GB3 的情况.综上所述当时,取到最大值为. 典例9(与数列结合):(2019全国1卷理科21)为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验试验方案如下:每一轮选取两只白鼠对药效进行对比试验对于两只白鼠,随机选
15、一只施以甲药,另一只施以乙药一轮的治疗结果得出后,再安排下一轮试验当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分甲、乙两种药的治愈率分别记为和,一轮试验中甲药的得分记为X(1)求的分布列;(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,其中,假设,(i)证明:为等比数列;(ii)求,并根据的值
16、解释这种试验方案的合理性解:(1)由题意可知所有可能的取值为:,;则的分布列如下:(2),(i)即整理可得: 是以为首项,为公比的等比数列(ii)由(i)知:,作和可得:表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种实验方案合理.7连续型随机变量分布问题正态分布解题思路及步骤注意事项明确总体的均值和方差一般用样本的均值和方差估计总体的均值和方差求随机变量在某范围概率利用正态密度曲线关于对称性求概率典例10:(2107全国1卷理科19)为了监控某种零件的一条生产线的生产过程,检验员每天从该生
17、产线上随机抽取个零件,并测量其尺寸(单位:)根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布(1)假设生产状态正常,记表示一天内抽取的个零件中其尺寸在之外的零件数,求及的数学期望;(2)一天内抽检零件中,如果出现了尺寸在之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查()试说明上述监控生产过程方法的合理性;()下面是检验员在一天内抽取的个零件的尺寸:9.9510.129.969.9610.019.929.9810.0410.269.9110.1310.029.2210.0410.059.95经计算得,其中为抽取的第个零件的尺
18、寸,用样本平均数作为的估计值,用样本标准差作为的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除之外的数据,用剩下的数据估计和(精确到)附:若随机变量服从正态分布,则,【解析】(1)由题可知尺寸落在之内的概率为,落在之外的概率为,由题可知,所以.(2)(i)尺寸落在之外的概率为,由正态分布知尺寸落在之外为小概率事件,因此上述监控生产过程的方法合理(ii),因为,所以需对当天的生产过程检查 因此剔除,剔除数据之后:所以.8最小二乘法求两个线性变量的回归方程问题解题思路及步骤注意事项画散点图若样本点大致分布在一条直线附近,则可判断两个变量具有线性相关,若题设已知两个变量线性相关,可省略该
19、步骤求和准确计算和列表计算根据样本数据特点合理选用公式计算,若各数据与平均数差的有效数学字比原数据少,则选用作差再相乘的公式求,写出回归方程运算结果保留两位小数位数应与题目要求典例11:(2016全国3卷理科18)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2008-2014.(1)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明.(2)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据: yi=9.32, tiyi=40.17, =0.55,2.646.参考公式
20、:相关系数r= 回归方程中斜率和截距的最小二乘估计公式分别为:,解:(1)由折线图中的数据和附注中参考数据得因为y与t的相关系数近似为0.99,说明y与t的线性相关程度相当高,从而可以用线性回归模型拟合y与t的关系.(2)由=1.331及(1)得0.103,1.331-0.10340.92.所以,y关于t的回归方程为=0.92+0.10t.将2016年对应的t=9代入回归方程得:=0.92+0.109=1.82.所以预测2016年我国生活垃圾无害化处理量约为1.82亿吨.9两个变量通过换元可转化为线性相关问题解题思路及步骤注意事项画散点图根据样本点分布情况确定两个变量适用的函数模型,若题设已知
21、两个变量的函数模型,可省略该步骤换元通过换元,使得换元后的两个变量线性相关(一次函数关系)求线性回归程用最小二乘法求线性回归方程还原还原为原来两个变量的回归方程典例12:(2015全国1卷理科19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,8)数据作了初步处理,得到下面的散点图及一些统计量的值.xywi=18(xi-xi=18(wi-wi=18(xi-x)(yi-i=18(wi-w)(yi-46.65636.8289.81.61 469108.8表中wi=xi
22、,w=18(1)根据散点图判断,y=a+bx与y=c+dx哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程.(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:年宣传费x=49时,年销售量及年利润的预报值是多少?年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),(un,vn),其回归线v=+u的斜率和截距的最小二乘估计分别为:=i=1n(uiu)(v解:(1)由散点图的变化趋势可以判断,y=c+dx适宜作为年销售量y关于年
23、宣传费x的回归方程类型.(2)令w=x,先建立y关于w的线性回归方程.由于=y-w=563-686.8=100.6,所以y关于w的线性回归方程为=100.6+68w,因此y关于x的回归方程为=100.6+68x.(3)由(2)知,当x=49时,年销售量y的预报值=100.6+6849=576.6,年利润z的预报值=576.60.2-49=66.32.根据(2)的结果知,年利润z的预报值,=0.2(100.6+68x)-x=-x+13.6x+20.12.所以当x=13.62=6.8,即x=46.24时,取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.10两个分类变量是否有关的独立性
24、检验问题解题思路及步骤注意事项22列联表注意是用样本数据而不是总体数据计算卡方注意运算策略,处理分子的交叉相乘时应先提公因式,平方数写成乘积形式再约分,最后除法运算保留三位小数比较经验值要根据题设中的百分比找对应的经验值做比较下结论根据比较结果,把结论完整的表述出来,不能只是说有关或无关典例13:(2018全国3卷理科18)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(
25、1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:, 解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位
26、数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生
27、产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.二、知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1用样本的数字特征估计总体的数字特征(1)样本本均值:(2)样本标准差:(3)频率分布直方图估算样本众数、中位数、平均数众数:最高小矩形中点值;中位数:先确定中位数所在小组,设中位数为m,由直线x=m两侧小矩形面积之和等于0.5列方程求m平均数:各小矩形中点值与其面积的积的和2随机事件的概率及概率的意义(1)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(2)概率定义:在相同的条
28、件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的频率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率3概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 淮阴师范学院《书法基础》2021-2022学年第一学期期末试卷
- 淮阴师范学院《教师职业道德与教育政策法规》2021-2022学年第一学期期末试卷
- 淮阴师范学院《运动技能学习与控制》2022-2023学年期末试卷
- 淮阴工学院《青少年社会工作》2023-2024学年第一学期期末试卷
- 淮阴工学院《证券投资学2》2021-2022学年第一学期期末试卷
- 中国马克思主义当代作业
- 售后服务网点方案三篇
- 市场机会识别运用金融科技助力企业发展考核试卷
- 森林经济发展与生态修复技术考核试卷
- 民族风情体验深入了解各地的民族文化考核试卷
- 大模型应用开发极简入门基于GPT-4和ChatGPT
- 2024年河南中考历史试卷试题答案解析及备考指导课件
- 河南省郑州枫杨外国语学校2025届物理九年级第一学期期中综合测试模拟试题含解析
- 食品安全与营养健康自查制度(学校食堂)
- 车位去化方案
- 中医护理三基理论知识习题+参考答案
- 糖尿病与糖尿病并发症
- 小学校情学情分析
- 项目、项目群和项目组合管理 项目管理指南
- (正式版)JTT 1482-2023 道路运输安全监督检查规范
- 人工智能算力中心平台建设及运营项目可行性研究报告
评论
0/150
提交评论