勾股定理说课稿模板汇总八篇_第1页
勾股定理说课稿模板汇总八篇_第2页
勾股定理说课稿模板汇总八篇_第3页
勾股定理说课稿模板汇总八篇_第4页
勾股定理说课稿模板汇总八篇_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、本文格式为Word版,下载可任意编辑第 第 页勾股定理说课稿模板汇总八篇勾股定理说课稿 篇1 尊敬的各位评委、老师,您们好,我是临沂市苍山县实验中学的宋宁。今天我说课的内容是人教版数学八年级下册第十八章第一节勾股定理第一课时,我将从教材、教法与学法、教学过程、教学评价以及设计说明五个方面来阐述对本节课的理解与设计。 一、教材分析: (一) 教材的地位与作用 从知识结构上看百度一下,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。 从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁; 勾股定理又是对学生进

2、行爱国主义教育的良好素材,因此具备相当重要的地位和作用。 根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。其中方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。 (二)重点与难点 为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引领学生动手实验突出重点,合作交流突破难点。 二、教学与学法分析 教学方法 叶圣陶说过“教师之为教,不在全盘授予,而在相机诱导。”因此教师利用几何直观提出问题,引领学生由浅入深的探索,设计实验让学生进行验证,

3、感悟其中所蕴涵的思想方法。 学法指导 为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。 三、教学过程 我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。 首先,情境导入 古韵今风 给出七巧八分图中的一组图片,让学生利用两组七巧板进行合作拼图。(请看视频)让学生观察并思考三个正方形面积之间的关系?它们围成了什么三角形?反映在三边上,又蕴含着什么数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。 第二步 追溯历史 解密真相 勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原

4、则,我设计如下三个活动。 从上面低起点的问题入手,有利于学生参与探索。学生很容易发现,在等腰三角形中存在如下关系。巧妙的将面积之间的关系转化为边长之间的关系,体现了转化的思想。观察发现虽然直观,但面积计算更具说服力。将图形转化为边在格线上的图形,以便于计算图形面积,体现了数形结合的思想。学生会想到用“数格子”的方法,这种方法虽然简单易行,但对于下一步探索一般直角三角形并不适用,具备局限性。因此教师应引领学生利用“割”和“补”的方法求正方形C的面积,为下一步探索复杂图形的面积做铺垫。 突破等腰直角三角形的束缚,探索在一般情况下的直角三角形是否也存在这一结论呢?体现了“从特殊到一般”的认知规律。教

5、师给出边长单位长度分别为3、4、5的直角三角形,避免了学生因作图不准确而产生的错误,也为下面 “勾三股四弦五”的提出埋下伏笔。有了上一环节的铺垫,有效地分散了难点。在求正方形C的面积时,学生将展示“割”的方法, “补”的方法,有的学生可能会发现平移的方法,旋转的方法,对于这两种新方法教师应给于表扬,肯定学生的研究成果,培养学生的类比、迁移以及探索问题的能力。 使用几何画板动态演示,使几何与代数之间的关系可视化。当为直角三角形时,改变三边长度三边关系不变,当为锐角或钝角时,三边关系就改变了,进而强调了命题成立的前提条件必须是直角三角形。加深学生对勾股定理理解的同时也拓展了学生的视野。 以上三个环

6、节层层深入步步引领,学生归纳得到命题1,从而培养学生的合情推理能力以及语言表达能力。 感性认识未必是正确的,推理验证证实我们的猜想。 第三步 推陈出新 借古鼎新 教材中直接给出“赵爽弦图”的证法对学生的思维是一种禁锢,教师创新使用教材,利用拼图活动解放学生的大脑,让学生发挥自己的聪明才智证明勾股定理。这是教学的难点也是重点,教师应给学生充分的自主探索的时间与空间,让学生的思维在相互讨论中碰撞、在相互学习中完善。教师深入到学生中间,观察学生探究方法接受学生的质疑,对于不同的拼图方案给予肯定。从而体现出“学生是学习的主体,教师是组织者、引领者与合作者”这一教学理念。学生会发现两种证明方案。 方案1

7、为赵爽弦图,学生讲解论证过程,再现古代数学家的探索方法。方案2为学生自己探索的结果,论证之巧较方案1有异曲同工之妙。整个探索过程,让学生经历由表面到本质,由合情推理到演绎推理的发掘过程,体会数学的严谨性。对比“古”、“今”两种证法,让学生体会“吹尽黄沙始到金”的喜悦,感受到“青出于蓝而胜于蓝”的自豪感。板书勾股定理,进而给出字母表示,培养学生的符号意识。 教师对“勾、股、弦”的含义以及古今中外对勾股定理的研究做一个介绍,使学生感受数学文化,培养民族自豪感和爱国主义精神。利用勾股树动态演示,让学生欣赏数学的精巧、优美。 第四步 取其精华 古为今用 我按照“理解掌握运用”的梯度设计了如下三组习题。

8、 (1)对应难点,巩固所学;(2)考查重点,深化新知;(3)解决问题,感受应用 第五步 温故反思 任务后延 在课堂接近尾声时,我鼓励学生从“四基”的要求对本节课进行小结。进而总结出一个定理、二个方案、三种思想、四种经验。 然后布置作业,分层作业体现了教育面向全体学生的理念。 四、教学评价 在探究活动中,教师评价、学生自评与互评相结合,从而体现评价主体多元化和评价方式的多样化。 五、设计说明 本节课探究体验贯穿始终,展示交流贯穿始终,习惯养成贯穿始终,情感教育贯穿始终,文化育人贯穿始终。 采用 “七巧板”代替教材中“毕达哥拉斯地板砖”利用我国传统文化引入课题,赵爽弦图证明定理,符合本节课以我国数

9、学文化为主线这一设计理念,展现了我国古代数学璀璨的历史,激发学生再创数学辉煌的愿望。 以上就是我对勾股定理这一课的设计说明,有不足之处请评委老师们指正,谢谢大家。 勾股定理说课稿 篇2 一、教材分析 (一)教材所处的地位 这节课是九年制义务教育课程标准实验教科书八年级第十八章第一节勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)根据课程标准,本课的教学目标是: 1、知识技能:了解勾股定理的文化背景,体验勾股

10、定理的探索过程。 2、数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。 3、解决问题:通过拼图活动,体验数学思维的严谨性,发展形象思维。 在探究过程中,学会与人合作并能与他人交流思维的过程和探究的结果。 4、情感态度:通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激发学生发奋学习。 在探究过程中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神。 (三)本课的教学重点:探索和证明勾股定理 本课的教学难点:用拼图的方法证明勾股定理 二、教法与学法分析: 教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,

11、由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决巩固练习课堂小结 布置作业七部分。 学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。 三、教学过程设计 (一)提出问题: 首先提出问题1:你知道下图所表示的意义吗?创设问题情境,20 xx年在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的奥运会,这就是本届

12、大会会徽的图案,你听说过勾股定理吗?通过提出问题,从而激发学生的求知欲。 其次提出问题2:你知道勾三、股四、弦五的意义吗?此问题由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。这样引起学生的学习兴趣,激发学生的求知欲。 勾股定理说课稿 篇3 勾股定理就是继续学习的一个直角三角形的判断定理,下面就是我整理的勾股定理说课稿苏教版,欢迎来参考! 一、教材分析 勾股定理就是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它就是直角三角形的一条非常重要的性质,就是几何中最重要的定理之一,它揭示了一个三角形三条边之

13、间的数量关系,它可以解决直角三角形中的计算问题,就是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。 据此,制定教学目标如下: 1、理解并掌握勾股定理及其证明。 2、能够灵活地运用勾股定理及其计算。 3、培养学生观察、比较、分析、推理的能力。 4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。 教学重点:勾股定理的证明和应用。 教学难点:勾股定理的证明。 二、教法和学法

14、教法和学法就是体现在整个教学过程中的,本课的教法和学法体现如下特点: 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。 三、教学程序 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下: (一)创设情境 以古引新 1、由故事引入,3000多年前有

15、个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾就是3,股就是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。 2、就是不就是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。 3、板书课题,出示学习目标。 (二)初步感知 理解教材 教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。 (三)质疑解难 讨论归纳 1、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。 2、教师引导学生按照要求进行拼图,观察并分析; (1)这两个图

16、形有什么特点? (2)你能写出这两个图形的面积吗? (3)如何运用勾股定理?就是否还有其他形式? 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流。先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨,最后,师生共同归纳,形成一致意见,最终解决疑难。 (四)巩固练习 强化提高 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学生的疲劳。 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的

17、形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。 (五)归纳总结 练习反馈 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能力得到培养。 勾股定理说课稿 篇4 一、说教材分析 本节研究的是勾股定理的探索及其应用。它从边的角度进一步对直角三角形的特征进行了刻画。 它的主要内容是探索勾股定理,

18、验证勾股定理的正确性,在此基础上,让学生利用勾股定理来解决一些实际问题。本节课是在学生认识直角三角形的基础上,在了解正方形和等腰直角三角形以后进行学习的,它是前面所学知识的延伸和拓展,又是后面学习勾股定理逆定理的基础,具有承上启下的作用。 二、说教学目标 教学目标的确定:教学目标是一堂课的中心任务,它只有在丰富多彩的数学活动中才能充分实现。一堂课的教学目标应全面、适度、明确、具体,便于检测。因此根据学生已有的认知基础和新课程标准,我确定了本节课教学目标为: 1、知识技能: (1)了解勾股定理的文化背景,体验勾股定理的探索和验证过程。 (2)运用勾股定理进行简单的计算和解释生活中的实际问题。 (

19、3)运用勾股定理会在数轴上画出表示无理数的点。 2、数学思考: 在勾股定理的探索、从实际问题抽象出直角三角形和在数轴上画出表示无理数的点的过程中,发展合情推理能力,初步体会、掌握转化和数形结合的思想方法。 3、解决问题: 通过拼图、探究活动,体验数学思维的严谨性,发展形象思维。学会与人合作并能与他人交流思维的过程和探究的结果。能够运用勾股定理解决直角三角形,在数轴上画出表示无理数的点等有关实际问题。 4、情感态度: ()通过对勾股定理历史的了解和实例应用,体会勾股定理的文化价值,感受数学文化,激发学习热情。 ()通过获得成功的经验和克服困难的经历,增进数学学习的信心。 (3)通过研究一系列富有

20、探究性的问题,培养学生与他人交流、合作的意识和品质。 三、说教学重、难点 教学重、难点的确定:关注学生是否能与同伴进行有效的合作交流;关注学生是否积极的进行思考;关注学生能否探索出解决问题的方法。 重点:通过探索、拼图验证勾股定理及勾股定理的应用过程,使学生获得一些研究问题与合作交流的方法经验。 难点:利用数形结合的方法探索发现、验证勾股定理及其在实际生活中的应用。 四、知识反映出来的技能、能力、方法、德育等因素 本节知识通过 “ 探索发现拼图实践探索验证分析结果运用定理 ” 等活动过程,使学生进一步理解勾股定理,并从中学会思考,学会探索,学会运用,学会交流,体会知识反映出来的丰富的文化内涵,

21、指导学生认识现实世界中蕴涵着的数学信息。 五、教学方法 数学知识、数学思想和方法必须由学生在现实的数学活动实践中理解和发展;教学中,以学生为本位,充分挖掘教材的空间,为学生搭建动手实践、自主探索、合作交流的平台; 注重让学生经历数学知识的形成过程,充分调动学生的学习积极性,并通过这个过程,使学生体验学习成功的乐趣,在积极的思维中获取知识,发展能力。 六、教学程序设计: 为充分发挥学生的主体性和教师的主导辅助作用,设计了以下几个环节: (1)创设情境,引入新课 问题 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防

22、队能否进入三楼灭火? 师生行为:教师出示照片及图片,并提出问题,学生观察图片发表见解。 设计意图:从现实生活中提出勾股定理,为学生能够积极主动的投入到探索活动创设情景,激发学生学习热情。同时为探索勾股定理提供背景材料。达到引入新课的目的。 (1)独立探究,合作交流。 讲述数学家毕达哥拉斯的故事 问题 A、B、C的面积有什么关系? SA+SB=SC 直角三角形三边有什么关系? 两直边的平方和等于斜边的平方 设计意图:问题是思维的起点,通过激发学生好奇、探究和主动学习的欲望。利用面积相等法,让学生发现以直角三角形两直角边为边长的正方形的面积,以斜边为边长的正方形的面积之间的关系。降低学生学习难度,

23、从(3)自主实践,探索验证 课程标准指出:“数学教学是数学活动的教学。”要求学生分学习小组,动手实践,积极思考,获得技能与解决问题的方法。关注学生动手实践,关注学生主动探索与合作,关注学生积极思考,给学生思维表达的时间、空间,让学生经历探索知识的过程,并在这个过程中得到发展.。 两种拼图方案 1、2、 师生行为:教师演示动画和图片,同时提出问题,学生在独立思考的基础上以小组为单位,动手拼接,教师深入小组活动倾听学生的交流,帮助、指导学生完成拼图活动。学生展示分割、拼接的过程。 设计意图:通过观察、拼图、探究活动,给学生充分的时间与空间讨论、交流,鼓励学生敢于发表自己的见解,感受合作的重要性,充

24、分调动学生思维的积极性,发展形象思维,使学生对定理更加深刻,通过这一教学过程来达到突破难点的目的。 (4)应用定理,解决问题 数学源于实践,运用于实践;开放性处理教材,鼓励学生充分地发表意见,表现自我,让学生在教师营造的“创新土壤”中成为主人;给学生思维以广阔的空间,培养学生从多角度运用所学知识寻求解决问题的能力. 勾股定理说课稿 篇5 一、 教材分析 1 教材的地位和作用 它也是几何中最重要的定理,它将形和数密切联系起来,在数学的发展中起着重要的作用。 因此他的教育教学价值就具体体现在如下三维目标中: 知识与技能: 1、经历勾股定理的探索过程,体会数形结合思想。 2、理解直角三角形三边的关系

25、,会应用勾股定理解决一些简单的实际问题。 过程与方法: 1、经历观察猜想归纳验证等一系列过程,体会数学定理发现的过程,由特殊到一般的解决问题的方法。 2、在观察、猜想、归纳、验证等过程中培养学生们的数学语言表达能力和初步的逻辑推理能力。 情感、态度与价值观: 1、通过对勾股定理历史的了解,感受数学文化,激发学习兴趣。 2、在探究活动中,体验解决问题方法的多样性,培养学生们的合作意识和然所精神。 3、让学生们通过动手实践,增强探究和创新意识,体验研究过程,学习研究方法,逐步养成一种积极的生动的,自助合作探究的学习方式。 由于八年级的学生们具有一定分析能力,但活动经验不足,所以 本节课教学重点:勾

26、股定理的探索过程,并掌握和运用它。 教学难点:分割,补全法证面积相等,探索勾股定理。 二.教法学法分析: 要上好一堂课,就是要把所确定的三维目标有机地溶入到教学过程中去,所以我采用了“引导探究式”的教学方法: 先从学生们熟知的生活实例出发,以生活实践为依托,将生活图形数学化,然后由特殊到一般地提出问题,引导学生们在自主探究与合作交流中解决问题,同时也真正体现了数学课堂是学生们自己的课堂。 学法:我想通过“操作+思考”这样方式,有效地让学生们在动手、动脑、自主探究与合作交流中来发现新知,同时让学生们感悟到:学习任何知识的最好方法就是自己去探究。 三、 教学程序设计 1、 故事引入新课,激起学生们

27、学习兴趣。 牛顿,瓦特的故事,让学生们科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。毕达哥拉斯的发现引入新课。 2、探索新知 在这里我设计了四个内容: 探索等腰直角三角形三边的关系 边长为3、4、5为边长的直角三角形的三边关系 学生们画两直角边为2,6的直角三角形,探索三边的关系 三边为a、b、c的直角三角形的三边的关系,(证明) 勾股定理历史介绍,让学生们体会勾股定理的文化价值。 体现从特殊到一般的发现问题的过程。 3、新知运用: 举出勾股定理在生活中的运用。(老师讲解勾股定理在生活中的运用) 在直角三角形

28、中,已知 B=90 ,AB=6,BC=8,求AC. 要做一个人字梯,要求人字梯的跨度为6米,高为4米,请问怎么做? 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”他们仅仅少走了 步路(假设2步为1米),却踩伤了花草 4、小结本课: 学完了这节课,你有什么收获? 老师补充:科学家的伟大成就多数都是在看似平淡无奇的现象中发现和研究出来的;生活中处处有数学,我们应该学会观察、思考,将学习与生活紧密结合起来。数学来源于实践,而又应用于实践。解决一个问题的方法是多样性的,我们要多思考。 勾股定是数学史上的明珠,证明方法有很多种,我们将在下一节课学习它。 勾股定理说

29、课稿 篇6 一、教材分析 勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。 据此,制定教学目标如下: 1、理解并掌握勾股定理及其证明。 2、能够灵活地运用勾股定理及其计算。 3、培养学生观察、比较、分析、推理的能力。 4、通过介绍中国

30、古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。 教学重点:勾股定理的证明和应用。 教学难点:勾股定理的证明。 二、教法和学法 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点: 1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。 2、切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。 3、通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知

31、的欲望。 三、教学程序 本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下: (一)创设情境 以古引新 1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形。如果勾是3,股是4,那么弦等于5。这样引起学生学习兴趣,激发学生求知欲。 2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。 3、板书课题,出示学习目标。 (二)初步感知 理解教材 教师指导学生自学教材,通过自学感悟理解新知。体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。 (三)质疑解难 讨论归纳 1、

32、教师设疑或学生提疑。如:怎样证明勾股定理?学生通过自学,中等以上的学生基本掌握,这时能激发学生的表现欲。 2、教师引导学生按照要求进行拼图,观察并分析; (1)这两个图形有什么特点? (2)你能写出这两个图形的面积吗? (3)如何运用勾股定理?是否还有其他形式? 这时教师组织学生分组讨论,调动全体学生的积极性,达到人人参与的效果,接着全班交流;先有某一组代表发言,说明本组对问题的理解程度,其他各组作评价和补充。教师及时进行富有启发性的点拨。最后,师生共同归纳,形成一致意见,最终解决疑难。 (四)巩固练习 强化提高 1、出示练习,学生分组解答,并由学生总结解题规律。课堂教学中动静结合,以免引起学

33、生的疲劳。 2、出示例1学生试解,师生共同评价,以加深对例题的理解与运用。针对例题再次出现巩固练习,进一步提高学生运用知识的能力,对练习中出现的情况可采取互评、互议的形式,在互评互议中出现的具有代表性的问题,教师可以采取全班讨论的形式予以解决,以此突出教学重点。 (五)归纳总结 练习反馈 引导学生对知识要点进行总结,梳理学习思路。分发自我反馈练习,学生独立完成。 本课意在创设愉悦和谐的乐学气氛,优化教学手段,借助电教手段提高课堂教学效率,建立平等、民主、和谐的师生关系。加强师生间的合作,营造一种学生敢想、感说、感问的课堂气氛,让全体学生都能生动活泼、积极主动地教学活动,在学习中创新精神和实践能

34、力得到培养。 勾股定理说课稿 篇7 课题:勾股定理 内容:教材分析、教法学法分析、教学过程设计、设计说明 一、 教材分析 (一)教材所处的地位 这节课是华师大九年制义务教育课程标准实验教科书八年级总第19章第2节探索勾股定理,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)根据课程标准,本课的教学目标是: 1、能说出勾股定理的内容。 2、会初步运用勾股定理进行简单的计算和实际运用。 3、在探索勾股定理的过程中,让学生经历“观

35、察猜想归纳验证”的数学思想,并体会数形结合和特殊到一般的思想方法。 4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。 (三)本课的教学重点:探索勾股定理 本课的教学难点:以直角三角形为边的正方形面积的计算。 二、教法与学法分析 教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分。 学法分析:在教师的组织引导下,

36、采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。 三、 教学过程设计 (一)数学史导入 以毕达哥拉斯发现勾股定理引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。 (二)实验操作 1、投影课本图的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达

37、,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。 2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图13,图14,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体

38、会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。 3、给出一个边长单位为5,12,13,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。 (三)归纳验证 1、归纳通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。 2、验证为了让学生确信结论的正确性,引导

39、学生在纸上任意作一个直角三角形,通过动手操作拼图来验证结论的正确性和广泛性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育和数学文化熏陶。 (四)问题解决 让学生解决生活中的实际问题,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。 (五)课堂小结 主要通过学生回忆本节课所学内容,从内容、应用、

40、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。 (六)布置作业 习题19.2(15) 有兴趣的同学可以查找另外的证明方法,写出12种出来 四、 设计说明 1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题实验操作归纳验证问题解决课堂小结布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。 2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的探索和研究,得出结论。这种一般化的思想方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形

41、成有重要作用,对学生的终身发展也有一定的作用。 3、关于练习的设计,除两个实际问题和课本习题以外,还让有兴趣的同学可以查找另外的证明方法,写出12种出来 4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学数学、用数学的意识是有很大的裨益的。 勾股定理说课稿 篇8 一、说教材分析: (一)本节内容在全书和章节的地位 这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一

42、,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。 (二)三维教学目标: 1. 理解并掌握勾股定理的内容和证明,能灵活运用勾股定理及其计算; 通过观察分析,大胆猜想,并且探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 2. 在探索勾股定理的过程中,让学生经历“观察猜想归纳验证”的数学思想,并且体会数形结合和从特殊到一般的思想方法。 3.通过介绍中国古代勾股方面的成就,激发学

43、生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。 (三)教学重点、难点: 勾股定理的证明与运用 用面积法等方法证明勾股定理 对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。 : 创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程; 自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间

44、相互交流、协作,从而形成生动的课堂环境; 张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。 二、说教法与学法分析 数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景动手操作归纳验证问题解决课堂小结布置作业”六个方面。 新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并且参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使得学生真正的成为学习的主人。 三、说教学过程设计 (一)创

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论