2022届九江市高考压轴卷数学试卷含解析_第1页
2022届九江市高考压轴卷数学试卷含解析_第2页
2022届九江市高考压轴卷数学试卷含解析_第3页
2022届九江市高考压轴卷数学试卷含解析_第4页
2022届九江市高考压轴卷数学试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1某几何体的三视图如图所示(单位:cm),则该几何体的表面积是( )ABCD2已知向量,则向量在向量方向上的投影为( )ABCD3关于函数,有下列三个结论:是的一个周期;在上单调递增;的值域为.则上述结论中,正确的个数为()ABCD4已知函数若函数在上零点最多,则实数的取值范围是( )ABCD5 “幻方”最早记载于我国公元前500年的春秋时期大戴礼中“阶幻方”是由前个正整数组成的个阶方阵,其各行各列及两条对角线所含的个数之和(简称幻和)相等,例如“3阶幻方”的幻和为15(如图所示)则“5阶幻方”的幻和为( )A75B65C55D456已知将函数(,)的图象向右平移个单位长度后得到函数的

3、图象,若和的图象都关于对称,则的值为( )A2B3C4D7设为虚数单位,为复数,若为实数,则( )ABCD8已知等比数列的前项和为,且满足,则的值是( )ABCD9已知复数z(1+2i)(1+ai)(aR),若zR,则实数a( )ABC2D210已知为虚数单位,实数满足,则 ( )A1BCD11已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-212已知函数,若对于任意的,函数在内都有两个不同的零点,则实数的取值范围为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13连续2次抛掷一颗质地均匀的骰子(六个面上分别标有数字1,2,3,4,5,6的

4、正方体),观察向上的点数,则事件“点数之积是3的倍数”的概率为_14已知数列的前项和为,且成等差数列,数列的前项和为,则满足的最小正整数的值为_.15已知向量,且,则_.16在四棱锥中,是边长为的正三角形,为矩形,.若四棱锥的顶点均在球的球面上,则球的表面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知正项数列的前项和.(1)若数列为等比数列,求数列的公比的值;(2)设正项数列的前项和为,若,且.求数列的通项公式;求证:.18(12分)已知函数(1)当时,若恒成立,求的最大值;(2)记的解集为集合A,若,求实数的取值范围.19(12分)己知,函数.(1)若

5、,解不等式;(2)若函数,且存在使得成立,求实数的取值范围.20(12分)已知函数.(1)若在上为单调函数,求实数a的取值范围:(2)若,记的两个极值点为,记的最大值与最小值分别为M,m,求的值.21(12分)已知各项均不相等的等差数列的前项和为, 且成等比数列.(1)求数列的通项公式;(2)求数列的前项和.22(10分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】根据三视图判断出几何体为正四棱锥,由此计算出几何体的表面积.【详解】根据三视图可知,该几

6、何体为正四棱锥.底面积为.侧面的高为,所以侧面积为.所以该几何体的表面积是.故选:D【点睛】本小题主要考查由三视图判断原图,考查锥体表面积的计算,属于基础题.2A【解析】投影即为,利用数量积运算即可得到结论.【详解】设向量与向量的夹角为,由题意,得,所以,向量在向量方向上的投影为.故选:A.【点睛】本题主要考察了向量的数量积运算,难度不大,属于基础题.3B【解析】利用三角函数的性质,逐个判断即可求出【详解】因为,所以是的一个周期,正确;因为,所以在上不单调递增,错误;因为,所以是偶函数,又是的一个周期,所以可以只考虑时,的值域当时,在上单调递增,所以,的值域为,错误;综上,正确的个数只有一个,

7、故选B【点睛】本题主要考查三角函数的性质应用4D【解析】将函数的零点个数问题转化为函数与直线的交点的个数问题,画出函数的图象,易知直线过定点,故与在时的图象必有两个交点,故只需与在时的图象有两个交点,再与切线问题相结合,即可求解.【详解】由图知与有个公共点即可,即,当设切点,则,.故选:D.【点睛】本题考查了函数的零点个数的问题,曲线的切线问题,注意运用转化思想和数形结合思想,属于较难的压轴题.5B【解析】计算的和,然后除以,得到“5阶幻方”的幻和.【详解】依题意“5阶幻方”的幻和为,故选B.【点睛】本小题主要考查合情推理与演绎推理,考查等差数列前项和公式,属于基础题.6B【解析】因为将函数(

8、,)的图象向右平移个单位长度后得到函数的图象,可得,结合已知,即可求得答案.【详解】将函数(,)的图象向右平移个单位长度后得到函数的图象,又和的图象都关于对称,由,得,即,又,.故选:B.【点睛】本题主要考查了三角函数图象平移和根据图象对称求参数,解题关键是掌握三角函数图象平移的解法和正弦函数图象的特征,考查了分析能力和计算能力,属于基础题.7B【解析】可设,将化简,得到,由复数为实数,可得,解方程即可求解【详解】设,则.由题意有,所以.故选:B【点睛】本题考查复数的模长、除法运算,由复数的类型求解对应参数,属于基础题8C【解析】利用先求出,然后计算出结果.【详解】根据题意,当时,,故当时,,

9、数列是等比数列,则,故,解得,故选.【点睛】本题主要考查了等比数列前项和的表达形式,只要求出数列中的项即可得到结果,较为基础.9D【解析】化简z(1+2i)(1+ai)=,再根据zR求解.【详解】因为z(1+2i)(1+ai)=,又因为zR,所以,解得a-2.故选:D【点睛】本题主要考查复数的运算及概念,还考查了运算求解的能力,属于基础题.10D【解析】 ,则 故选D.11D【解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【点睛】本题主要考查圆的性质应用,几何性质的转化

10、是求解的捷径.12D【解析】将原题等价转化为方程在内都有两个不同的根,先求导,可判断时,是增函数;当时,是减函数.因此,再令,求导得,结合韦达定理可知,要满足题意,只能是存在零点,使得在有解,通过导数可判断当时,在上是增函数;当时,在上是减函数;则应满足,再结合,构造函数,求导即可求解;【详解】函数在内都有两个不同的零点,等价于方程在内都有两个不同的根.,所以当时,是增函数;当时,是减函数.因此.设,若在无解,则在上是单调函数,不合题意;所以在有解,且易知只能有一个解.设其解为,当时,在上是增函数;当时,在上是减函数.因为,方程在内有两个不同的根,所以,且.由,即,解得.由,即,所以.因为,所

11、以,代入,得.设,所以在上是增函数,而,由可得,得.由在上是增函数,得.综上所述,故选:D.【点睛】本题考查由函数零点个数求解参数取值范围问题,构造函数法,导数法研究函数增减性与最值关系,转化与化归能力,属于难题二、填空题:本题共4小题,每小题5分,共20分。13【解析】总事件数为,目标事件:当第一颗骰子为1,2,4,6,具体事件有,共8种;当第一颗骰子为3,6,则第二颗骰子随便都可以,则有种;所以目标事件共20中,所以。141【解析】本题先根据公式初步找到数列的通项公式,然后根据等差中项的性质可解得的值,即可确定数列的通项公式,代入数列的表达式计算出数列的通项公式,然后运用裂项相消法计算出前

12、项和,再代入不等式进行计算可得最小正整数的值【详解】由题意,当时,当时,则,成等差数列,即,解得,即,即,即满足的最小正整数的值为1故答案为:1【点睛】本题主要考查数列求通项公式、裂项相消法求前项和,考查了转化思想、方程思想,考查了不等式的计算、逻辑思维能力和数学运算能力15【解析】由向量平行的坐标表示得出,求解即可得出答案.【详解】因为,所以,解得.故答案为:【点睛】本题主要考查了由向量共线或平行求参数,属于基础题.16【解析】做 中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,

13、即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做 中点,的中点,连接 ,由题意知,则 设的外接圆圆心为,则在直线上且 设长方形的外接圆圆心为,则在上且.设外接球的球心为 在 中,由余弦定理可知,.在平面中,以 为坐标原点,以 所在直线为 轴,以过点垂直于 轴的直线为 轴,如图建立坐标系,由题意知,在平面中且 设 ,则,因为,所以 解得.则 所以球的表面积为.故答案为: .【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差

14、;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2);详见解析.【解析】(1)依题意可表示,相减得,由等比数列通项公式转化为首项与公比,解得答案,并由其都是正项数列舍根; (2)由题意可表示,两式相减得,由其都是正项并整理可得递推关系,由等差数列的通项公式即可得答案;由已知关系,表示并相减即可表示递推关系,显然当时,成立,当,时,表示,由分组求和与正项数列性质放缩不等式得证.【详解】解:(1)依题意可得,两式相减,得,所以,因为,所以,且,解得.(2)因为,所以

15、,两式相减,得,即.因为,所以,即.而当时,可得,故,所以对任意的正整数都成立,所以数列是等差数列,公差为1,首项为1,所以数列的通项公式为.因为,所以,两式相减,得,即,所以对任意的正整数,都有.令,而当时,显然成立,所以当,时,所以,即,所以,得证.【点睛】本题考查由前n项和关系求等比数列公比,求等差数列通项公式,还考查了由分组求和表示数列和并由正项数列放缩证明不等式,属于难题.18(1);(2)【解析】(1)当时,由题意得到,令,分类讨论求得函数的最小值,即可求得的最大值.(2)由时,不等式恒成立,转化为在上恒成立,得到,即可求解.【详解】(1)由题意,当时,由,可得,令,则只需,当时,

16、;当时,;当时,;故当时,取得最小值,即的最大值为.(2)依题意,当时,不等式恒成立,即在上恒成立,所以,即,即,解得在上恒成立,则,所以,所示实数的取值范围是.【点睛】本题主要考查了含绝对值的不等式的解法,以及不等式的恒成立问题的求解与应用,着重考查了转化思想,以及推理与计算能力.19(1);(2)【解析】(1)零点分段解不等式即可(2)等价于,由,得不等式即可求解【详解】(1)当时,当时,由,解得;当时,由,解得;当时,由,解得.综上可知,原不等式的解集为.(2).存在使得成立,等价于.又因为,所以,即.解得,结合,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法,考查不等式恒成立

17、及最值,考查转化思想,是中档题20(1);(2)【解析】(1)求导.根据单调,转化为对恒成立求解(2)由(1)知,是的两个根,不妨设,令. 根据,确定,将转化为. 令,用导数法研究其单调性求最值.【详解】(1)的定义域为,.因为单调,所以对恒成立,所以,恒成立,因为,当且仅当时取等号,所以;(2)由(1)知,是的两个根.从而,不妨设,则. 因为,所以t为关于a的减函数,所以. 令,则. 因为当时,在上为减函数.所以当时,.从而,所以在上为减函数.所以当时,.【点睛】本题主要考查导数在函数中的综合应用,还考查了转化化归的思想和运算求解的能力,属于难题.21(1);(2)【解析】试题分析:(1)设公差为,列出关于的方程组,求解的值,即可得到数列的通项公式;(2)由(1)可得,即可利用裂项相消求解数列的和.试题解析:(1)设公差为.由已知得,解得或(舍去), 所以,故.(2),考点:等差数列

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论