版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A在内总存在与平面平行的线段B平面平面C三棱锥的体积为定值D可能为
2、直角三角形2在四面体中,为正三角形,边长为6,则四面体的体积为( )ABC24D3设,点,设对一切都有不等式 成立,则正整数的最小值为( )ABCD4设分别是双曲线的左右焦点若双曲线上存在点,使,且,则双曲线的离心率为( )AB2CD5已知双曲线(,)的左、右顶点分别为,虚轴的两个端点分别为,若四边形的内切圆面积为,则双曲线焦距的最小值为( )A8B16CD6若,则的虚部是( )ABCD7已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD8若点x,y位于由曲线x=y-2+1与x=3围成的封闭区域内(包括边界),则y+1x-2的取值范围是( )A-3
3、,1B-3,5C-,-35,+D-,-31,+9某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为,若低于60分的人数是18人,则该班的学生人数是( )A45B50C55D6010如图,在三棱锥中,平面,分别是棱,的中点,则异面直线与所成角的余弦值为A0BCD111如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是( )ABCD12已知直线与直线则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13下图是一个算法的流程图,则输出的x的值为_14已知集
4、合,则_.15在平面直角坐标系中,双曲线(,)的左顶点为A,右焦点为F,过F作x轴的垂线交双曲线于点P,Q.若为直角三角形,则该双曲线的离心率是_.16在四棱锥中,底面为正方形,面分别是棱的中点,过的平面交棱于点,则四边形面积为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,已知抛物线:与圆: ()相交于, , ,四个点,(1)求的取值范围;(2)设四边形的面积为,当最大时,求直线与直线的交点的坐标.18(12分)设为坐标原点,动点在椭圆:上,该椭圆的左顶点到直线的距离为.(1)求椭圆的标准方程;(2)若椭圆外一点满足,平行于轴,动点在直线上,满足.设过点
5、且垂直的直线,试问直线是否过定点?若过定点,请写出该定点,若不过定点请说明理由.19(12分)在平面直角坐标系中,已知椭圆的左、右顶点分别为、,焦距为2,直线与椭圆交于两点(均异于椭圆的左、右顶点).当直线过椭圆的右焦点且垂直于轴时,四边形的面积为6.(1)求椭圆的标准方程;(2)设直线的斜率分别为.若,求证:直线过定点;若直线过椭圆的右焦点,试判断是否为定值,并说明理由.20(12分)如图所示,在四棱锥中,平面,底面ABCD满足ADBC,E为AD的中点,AC与BE的交点为O.(1)设H是线段BE上的动点,证明:三棱锥的体积是定值;(2)求四棱锥的体积;(3)求直线BC与平面PBD所成角的余弦
6、值21(12分)在中,角所对的边分别是,且.(1)求;(2)若,求.22(10分)已知关于的不等式解集为().(1)求正数的值;(2)设,且,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确; B项,如图:当M、N
7、分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若DMN为直角三角形,则必是以MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.2
8、A【解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【详解】解: 在四面体中,为等边三角形,边长为6,分别取的中点,连结,则,且,平面,平面,四面体的体积为:.故答案为:.【点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.3A【解析】先求得,再求得左边的范围,只需,利用单调性解得t的范围.【详解】由题意知sin,随n的增大而增大,,,即,又f(t)=在t上单增,f(2)= -10,正整数的最小值为3.【点睛】本题考查了数列的通项及求和问题,考查了数列的单调性及不等式的解法,考查了转化思想,属于中档题.4
9、A【解析】由及双曲线定义得和(用表示),然后由余弦定理得出的齐次等式后可得离心率【详解】由题意,由双曲线定义得,从而得,在中,由余弦定理得,化简得故选:A【点睛】本题考查求双曲线的离心率,解题关键是应用双曲线定义用表示出到两焦点的距离,再由余弦定理得出的齐次式5D【解析】根据题意画出几何关系,由四边形的内切圆面积求得半径,结合四边形面积关系求得与等量关系,再根据基本不等式求得的取值范围,即可确定双曲线焦距的最小值.【详解】根据题意,画出几何关系如下图所示:设四边形的内切圆半径为,双曲线半焦距为,则所以,四边形的内切圆面积为,则,解得,则,即故由基本不等式可得,即,当且仅当时等号成立.故焦距的最
10、小值为.故选:D【点睛】本题考查了双曲线的定义及其性质的简单应用,圆锥曲线与基本不等式综合应用,属于中档题.6D【解析】通过复数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.7A【解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;
11、当与()相切时,满足,解得,结合图像可知,即,故选:A【点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,找准临界是解题的关键,属于中档题8D【解析】画出曲线x=y-2+1与x=3围成的封闭区域,y+1x-2表示封闭区域内的点(x,y)和定点(2,-1)连线的斜率,然后结合图形求解可得所求范围【详解】画出曲线x=y-2+1与x=3围成的封闭区域,如图阴影部分所示y+1x-2表示封闭区域内的点(x,y)和定点P(2,-1)连线的斜率,设k=y+1x-2,结合图形可得kkPA或kkPB,由题意得点A,B的坐标分别为A(3,0),B(1,2),kPA=13-2=1,kPB=2-(-1)
12、1-2=-3,k1或k-3,y+1x-2的取值范围为-,-31,+故选D【点睛】解答本题的关键有两个:一是根据数形结合的方法求解问题,即把y+1x-2看作两点间连线的斜率;二是要正确画出两曲线所围成的封闭区域考查转化能力和属性结合的能力,属于基础题9D【解析】根据频率分布直方图中频率小矩形的高组距计算成绩低于60分的频率,再根据样本容量求出班级人数.【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)200.30,样本容量(即该班的学生人数)是60(人).故选:D.【点睛】本题考查了频率分布直方图的应用问题,也考查了频率的应用问题,属于基础题10B【解析】根据题意可得平
13、面,则即异面直线与所成的角,连接CG,在中,易得,所以,所以,故选B11A【解析】联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.12B【解析】利用充分必要条件的定义可判断两个条件之间的关系.【详解】若,则,故或,当时,直线,直线 ,此时两条直线平行;当时,直线,直线 ,此时两条直线平行.所以当时,推不出,故“”是“”的不充分条件,当时,可以推出,故“”是“”的必要条件,故
14、选:B.【点睛】本题考查两条直线的位置关系以及必要不充分条件的判断,前者应根据系数关系来考虑,后者依据两个条件之间的推出关系,本题属于中档题.二、填空题:本题共4小题,每小题5分,共20分。131【解析】利用流程图,逐次进行运算,直到退出循环,得到输出值.【详解】第一次:x4,y11,第二次:x5,y32,第三次:x1,y14,此时141013,输出x,故输出x的值为1故答案为:.【点睛】本题主要考查程序框图的识别,“还原现场”是求解这类问题的良方,侧重考查逻辑推理的核心素养.14【解析】根据交集的定义即可写出答案。【详解】,故填【点睛】本题考查集合的交集,需熟练掌握集合交集的定义,属于基础题
15、。152【解析】根据是等腰直角三角形,且为中点可得,再由双曲线的性质可得,解出即得.【详解】由题,设点,由,解得,即线段,为直角三角形,且,又为双曲线右焦点,过点,且轴,可得,整理得:,即,又,.故答案为:【点睛】本题考查双曲线的简单性质,是常考题型.16【解析】设是中点,由于分别是棱的中点,所以,所以,所以四边形是平行四边形.由于平面,所以,而,所以平面,所以.由于,所以,也即,所以四边形是矩形. 而.从而.故答案为:.【点睛】本小题主要考查空间平面图形面积的计算,考查线面垂直的判定,考查空间想象能力和逻辑推理能力,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1
16、7(1)(2)点的坐标为【解析】将抛物线方程与圆方程联立,消去得到关于的一元二次方程, 抛物线与圆有四个交点需满足关于的一元二次方程在上有两个不等的实数根,根据二次函数的有关性质即可得到关于的不等式组,解不等式即可.不妨设抛物线与圆的四个交点坐标为,据此可表示出直线、的方程,联立方程即可表示出点坐标,再根据等腰梯形的面积公式可得四边形的面积的表达式,令,由及知,对关于的面积函数进行求导,判断其单调性和最值,即可求出四边形的面积取得最大值时的值,进而求出点坐标.【详解】(1)联立抛物线与圆的方程消去,得.由题意可知在上有两个不等的实数根.所以解得,所以的取值范围为.(2)根据(1)可设方程的两个
17、根分别为,(),则,且,所以直线、的方程分别为,,联立方程可得,点的坐标为,因为四边形为等腰梯形,所以,令,则,所以,因为,所以当时,;当时,, 所以函数在上单调递增,在上单调递减,即当时,四边形的面积取得最大值,因为,点的坐标为,所以当四边形的面积取得最大值时,点的坐标为.【点睛】本题考查利用导数求函数的极值与最值、抛物线及其标准方程及直线与圆锥曲线相关的最值问题;考查运算求解能力、转化与化归能力和知识的综合运用能力;利用函数的思想求圆锥曲线中面积的最值是求解本题的关键;属于综合型强、难度大型试题.18(1);(2)见解析【解析】(1)根据点到直线的距离公式可求出a的值,即可得椭圆方程;(2
18、)由题意M(x0,y0),N(x0,y1),P(2,t),根据,可得y12y0,由,可得2x0+2y0t6,再根据向量的运算可得,即可证明【详解】(1)左顶点A的坐标为(a,0),|a5|3,解得a2或a8(舍去),椭圆C的标准方程为+y21,(2)由题意M(x0,y0),N(x0,y1),P(2,t),则依题意可知y1y0,得(x02 x0,y12y0) (0,y1y0)=0,整理可得y12y0,或y1y0 (舍),得(x0,2y0)(2x0,t2y0)2,整理可得2x0+2y0tx02+4y02+26,由(1)可得F(,0),(x0,2y0),(x0,2y0)(2,t)62x02y0t0,
19、NFOP,故过点N且垂直于OP的直线过椭圆C的右焦点F【点睛】本题考查了椭圆方程的求法,直线和椭圆的关系,向量的运算,考查了运算求解能力和转化与化归能力,属于中档题.19(1);(2)证明见解析;【解析】(1)由题意焦距为2,设点,代入椭圆,解得,从而四边形的面积,由此能求出椭圆的标准方程(2)由题意,联立直线与椭圆的方程,得,推导出,由此猜想:直线过定点,从而能证明,三点共线,直线过定点由题意设,直线,代入椭圆标准方程:,得,推导出,由此推导出(定值)【详解】(1)由题意焦距为2,可设点,代入椭圆,得,解得,四边形的面积,椭圆的标准方程为(2)由题意,联立直线与椭圆的方程,得,解得,从而,同理可得,猜想:直线过定点,下证之:,三点共线,直线过定点为定值,理由如下:由题意设,直线,代入椭圆标准方程:,得,(定值)【点睛】本题考查椭圆标准方程的求法,考查直线过定点的证明,考查两直线的斜率的比值是否为定值的判断与求法,考查椭圆、直线方程、韦达定理等基础知识,考查运算求解能力,考查化归与转化思想,属于中档题20(1)证明见解析 (2) (3)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中建房建冬期专项施工方案
- 人教版七年级上册第一单元 生活中的音乐学习项目三 学习乐谱记录你的音乐生活(一)(简谱)课件
- 2024年独家授权房产销售合同3篇
- 血友病饮食指导
- 质量管理体系演讲稿
- 有创意的培训早会
- 华南理工大学《造型基础(二)》2022-2023学年第一学期期末试卷
- 重庆市第一中学2025届高三11月期中考试思想政治试题卷
- 新员工加入协议(2024年修订)3篇
- 产线员工培训计划方案
- 智能变色纺织品染料技术
- 《妇幼卫生项目管理》课件
- 水利项目安全生产培训课件
- 大学生职业生涯规划书-酒店管理和数字化运营
- 提高患者功能锻炼依从性课件
- 流行性感冒诊疗方案(2020版)
- 角膜移植的护理与术后康复
- 交通事故现场勘查要领课件
- 2024年组织效能提升方法
- 30道医院眼科医生岗位高频面试问题附考察点及参考回答
- 学校质量管理学校建筑管理
评论
0/150
提交评论