版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年七上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1下列方程中,是一元一次方程的是ABCD2如图,在ABC中,ABAC,A40,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则CBE的度数为( )A30B40C70D803下列各组中是同类项的是( )A与B与C与D与4解方程时,去分母正确
2、的是( )A4(2x-1)-9x-12=1B8x-4-3(3x-4)=12C4(2x-1)-9x+12=1D8x-4+3(3x-4)=125下列说法中,错误的是( )A单项式的次数是2B整式包括单项式和多项式C与是同类项D多项式是二次二项式6如图所示的图形经过折叠可以得到一个正方体,则与“体”字一面相对的面上的字是( )A我B育C运D动7圆柱侧面展开后,可以得到( )A平行四边形B三角形C梯形D扇形8 “在山区建设公路时,时常要打通一条隧道,就能缩短路程”,其中蕴含的数学道理是( )A两点确定一条直线B直线比曲线短C两点之间,线段最短D垂线段最短9若与是同类项,则的值为( )A1B2C3D无法
3、确定10估计的运算结果应在( )A3到4之间B4到5之间C5到6之间D6到7之间二、填空题(本大题共有6小题,每小题3分,共18分)11如图是一块长方形,由六个正方形组成,已知中间最小的一个正方形A的边长为cm,那么这个长方形的面积为_12往返于临江、靖宇两地的客车中途停靠3个站,最多有_种不同的票价13如果单项式与单项式是同类项,那么_.14若数轴上点和点分别表示数和,则点和点之间的距离是_15如图是一组有规律的图案, 它们由半径相同的圆形组成,依此规律,第 n 个图案中有_个圆形(用含有 n 的代数式表示).16已知线段,在直线AB上取一点P,恰好使,点Q为线段PB的中点,则AQ的长为_三
4、、解下列各题(本大题共8小题,共72分)17(8分)如图1,在数轴上点A,点B对应的数分别是6,6,DCE90(点C与点O重合,点D在数轴的正半轴上)(1)如图1,若CF平分ACE,则AOF 度;点A与点B的距离= (2)如图2,将DCE沿数轴的正半轴向右平移t(0t3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分ACE,此时记DCF当t1时, ;点B与点C的距离= 猜想BCE和的数量关系,并说明理由;(3)如图3,开始D1C1E1与DCE重合,将DCE沿数轴的正半轴向右平移t(0t3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分ACE,此时记DCF,与此同时,将D1C1E1沿数
5、轴的负半轴向左平移t(0t3)个单位,再绕点顶点C1顺时针旋转30t度,作C1F1平分AC1E1,记D1C1F1,若与满足|20,求t的值18(8分)(1)完成下面的证明.如图,在四边形中,是的平分线.求证:.证明:是的平分线(已知)_(角平分线的定义)又(已知)_(等量代换)(_)(2)已知线段,是的中点,在直线上,且,画图并计算的长.19(8分)(1)求的值,其中,;(2)若关于x,y的多项式不含三次项,求m与n的值20(8分)已知轮船在灯塔的北偏东30的方向上,距离为30海里,轮船在灯塔的南偏东45的方向上,距离20海里(1)请用1个单位长度表示10海里,在图上画出、的位置(2)求从灯塔
6、看两轮船的视角的度数21(8分)先化简,再求值:1(2x2x2y1)2(1x22x2y1),其中x=2,y=122(10分)如图,数轴上点分别对应数,其中当时,线段的中点对应的数是_ _ (直接填结果)若该数轴上另有一点对应着数当,且时,求代数式的值:且时学生小朋通过演算发现代数式是一个定值老师点评:小朋同学的演算发现还不完整!请你通过演算解释为什么“小朋的演算发现”是不完整的?23(10分)解答下列各题:(1)(2)24(12分)如图,OD、OC、OB、OA分别表示东西南北四个方向,OM的方向是西偏北50,OE的方向是北偏东15,OE是MOG的平分线,MOH=NOH=90.(1)OH的方向是
7、_,ON的方向是_;(2)通过计算,判断出OG的方向;(3)求HOG的度数.参考答案一、选择题(每小题3分,共30分)1、C【分析】一元一次方程是指只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程就叫做一元一次方程;据此逐项分析再选择【详解】A是整式方程,未知数的次数也是1,但是含有两个未知数,所以不是一元一次方程;B是含有一个未知数的分式方程,所以不是一元一次方程;C是含有一个未知数的整式方程,未知数的次数也是1,所以是一元一次方程;D是含有一个未知数的整式方程,但未知数的次数是2,所以不是一元一次方程故选C【点睛】本题考查了一元一次方程,解答此题明确一元一次方程
8、的定义是关键2、A【分析】由等腰ABC中,AB=AC,A=40,即可求得ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得ABE的度数,则可求得答案【详解】AB=AC,A=40,ABC=C=(180A)2=70,线段AB的垂直平分线交AB于D,交AC于E,AE=BE,ABE=A=40,CBE=ABC-ABE=30,故选:A【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键3、B【分析】如果两个单项式,他们所含的字母相同,并且相同字母的指数也分别相同,那么就称这两个单项式为同类项,据此进一步判断即可.【详
9、解】A:与中,字母对应指数不同,不是同类项,选项错误; B:与中,所含的字母相同,并且相同字母的指数也分别相同,是同类项,选项正确;C:与中,所含字母不同,不是同类项,选项错误; D:与中,所含字母不同,不是同类项,选项错误; 故选:B.【点睛】本题主要考查了同类项的判断,熟练掌握相关概念是解题关键.4、B【解析】试题解析:方程两边同乘以12得,4(2x-1)-3(3x-4)=12,即8x-4-3(3x-4)=12.A.等号右边没有乘以12,并且去括号未变号;B.正确;C. 等号右边没有乘以12;D.将第二项前面的“-”号抄成了“+”.故选B.5、A【分析】根据单项式、多项式、整式及同类项的概
10、念逐项分析即可.【详解】A. 单项式的次数是4,故不正确; B. 整式包括单项式和多项式,正确;C. 与是同类项,正确; D. 多项式是二次二项式,正确;故选A.【点睛】本题考查了整式、单项式、多项式及同类项的概念,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或一个字母也是单项式;含有加减运算的整式叫做多项式. 同类项的定义是所含字母相同, 并且相同字母的指数也相同的项,叫做同类项.6、C【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,与“体”字一面相对的面上的字
11、是运故选择:C【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题是关键7、A【分析】根据圆柱的特征,将圆柱分别沿高展开,沿除高外的任何直线展开都可得到展开图是平行四边形【详解】解:将圆柱侧面沿高展开,得到一个长方形,而长方形是特殊的平行四边形,沿除高之外的任何一条不同于高的直线展开都会得到平行四边形,所以圆柱的侧面展开后可以得到平行四边形故选:A【点睛】本题考查圆柱的侧面展开图与圆柱的关系,熟记常见几何体的侧面展开图是关键8、C【分析】根据线段的性质解答即可【详解】解:由线段的性质可知:两点的所有连线中,可以有无数种连法,如折线、曲线、线段等,这些所
12、有的线中,线段最短故选C【点睛】本题考查的是线段的性质,即两点之间线段最短9、C【分析】根据同类项是字母相同且相同字母的指数也相同,可得m、n的值,根据代数式求值,可得答案【详解】与是同类项, ,故选:C【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同10、D【分析】求出的范围,两边都加上3即可得出答案【详解】34,63+1故选:D【点睛】本题考查了估算无理数的大小的应用,关键是确定出的范围二、填空题(本大题共有6小题,每小题3分,共18分)11、【分析】设正方形B的边长是x,则正方形C、D、E、F的边长为:x-,x-,x-1,x-,根据矩形的
13、对边相等得到方程x+ x-= x-1+2(x-),求出x的值,再根据面积公式即可求出答案.【详解】设正方形B的边长是x,则正方形C、D、E、F的边长为:x-,x-,x-1,x-,根据题意,得x+ x-= x-1+2(x-)解得,长方形的面积为:故答案为:.【点睛】本题考查了一元一次方程的应用和矩形的性质,熟练掌握,即可解题.12、1【分析】将不同站点的票价问题转化为一条直线上5个点能组成线段的条数问题,先求出线段的条数,再计算票价和车票的种数【详解】解:设五个站点用ABCDE表示,根据线段的定义:可知图中共有线段有AC,AD,AE,AB,CD、CE、CB、DE、DB、EB共1条,有1种不同的票
14、价;故答案为:1【点睛】本题考查了线段,运用数学知识解决生活中的问题解题的关键是需要掌握正确数线段的方法13、3【分析】根据同类项的定义先解得的值,再代入求解即可.【详解】单项式与单项式是同类项,故填:3.【点睛】本题主要考查同类项的定义和代数式求值,熟练掌握定义是关键.14、1【分析】用B点表示的数减去A点表示的数即可得到A,B之间的距离【详解】解:1-(-3)=1+3=1,点A和点B之间的距离是1故答案为:1.【点睛】本题考查了数轴,会利用数轴求两点间的距离15、(3n1)【解析】观察图形,发现:圆形在4的基础上,依次多3个;根据其中的规律,用字母表示即可【详解】解:第1个图案中有圆形31
15、+1=4个,第2个图案中有圆形32+1=7个,第3图案中有圆形33+1=10个,第n个图案中有圆形个数是:3n+1故答案为3n+1【点睛】此题主要考查学生对图形的变化类的知识点的理解和掌握,此题的关键是注意发现前后图形中的数量之间的关系16、7或1【解析】当点P在线段AB上时,AB=8,AP长度是BP长度的3倍,AP=6,PB=2,点Q为PB的中点,PQ=PB=1,AQ=AP+PQ=6+1=7;当点P在线段AB的延长线上时,AB=8,AP长度是BP长度的3倍,BP=4,点Q为PB的中点,BQ=BP=2,AQ=AB+BQ=8+2=1,综上,线段AQ的长为7或1故答案为7或1三、解下列各题(本大题
16、共8小题,共72分)17、(1)45;12;(2)30;8;,理由见解析;(3)【分析】(1)根据角平分线的定义计算AOF,根据数轴概念计算距离;(2)根据FCDACFACD,求出ACF,ACD即可;根据数轴概念即可计算距离;猜想:BCE2根据BCEAOBECDACD计算即可;(3)求出,(用t表示),构建方程即可解决问题;【详解】(1)DCE90,CF平分ACE,AOF45,答案为:45;点A与点B的距离为12,答案为:12;(2)当t1时,FCDACFACD=60-30 =30,答案为:30;点B与点C的距离8,答案为:8;猜想:BCE理由如下:DCE90,DCF,ECF90-,CF平分A
17、CE,ACFECF90-点A,O,B共线AOB180,BCEAOB-ECD-ACD180-90-(90-);(3)由题意:FCA-DCA(90+30t)-30t45-15t AC1D1+AC1F130t+(9030t)45+15 |20,|30t|20,解得t 故答案为.【点睛】本题考查角的计算、角平分线的定义、数轴、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题18、(1)详见解析;(2)的长为或.【分析】(1)依据角平分线的的定义,即可推理得出2=3,进而判定DCAB(2)此题需要分类讨论,当点D在线段AB上时,当点D在线段AB的延
18、长线上时,分别画出图形,计算即可得出答案【详解】解:(1)平分(已知) .(角平分线的定义)(已知). (等量代换).(内错角相等,两直线平行)故答案为1,3,2,3,内错角相等,两直线平行;(2),是的中点当点D在线段AB上时,CD=CB-DB=6-2=4cm;当点D在线段AB的延长线上时,CD=CB+BD=6+2=8cm;综上所述,CD的长为4cm或8cm【点睛】此题考查了平行线的判定与性质、两点间的距离,解答本题的关键是分类讨论点D的位置,注意不要遗漏19、(1),;(2)m2,n【分析】(1)根据整式的加减运算法则先去括号,再合并同类项进行化简,最后代入求值即可(2)根据题意将m,n看
19、做有理数,对原式进行合并同类项得到(m2)y3(3n1)x2yy,根据题意知此整式不含三次项即m20,3n10,求出m,n【详解】(1)解:原式可化为: = 当时,原式= = = (2)解:my33nx2y2y3x2yy(m2)y3(3n1)x2yy,此多项式不含三次项,m20,3n10, m2,n,【点睛】此题考查整式加减的运算法则,去括号合并同类项时注意符号的变化,另外涉及到求整式的系数,难度一般,认真计算即可20、(1)见解析;(2)两轮船的视角APB的是105【分析】(1)根据方向角的定义画出图形即可;(2)根据角的和差计算即可【详解】解:(1) 如图所示,A、B就是所求作的点 (2)
20、由题意可知,得:APN30,BPS45,APB180APNBPS 1803045105答:两轮船的视角APB的是105【点睛】本题考查了方向角,熟练掌握方向角的意义是解答本题的关键在观测物体时,地球南北方向与观测者观测物体视线的夹角叫做方向角21、x2y1 ,-2【分析】先利用去括号法则去括号,合并得到最简结果,将x与y的值代入计算,即可求出值【详解】1(2x2x2y1)2(1x22x2y1)= = x2y1 ,当x=2,y=1时,原式=.【点睛】此题考查了整式的加减-化简求值,以及整式的加减运算,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键22、(1)2;(2)2019;详见解析【分析】(1)根据中点公式计算即可得出答案;(2)先根据“和”得出含a和b的式子并进行整理,将整理后的式子代入后面的代数式计算即可得出答案;分两种情况进行讨论,情况1当时,情况2当时,分别计算即可得出答案.【详解】解:(1),故答案为2;(2)由,且,可得,整理得所以,当,且时,需要分两种情形:情况1:当时,整理得情况2:当时,整理得综上,小朋的演算发现并不完整【点睛】本题考查的是数轴上两点间的距离,难度偏高,需要理解并记忆两点间的距离公式.23、(1);(2)【分析】(1)先运用乘方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 最有效的婚内协议书(2篇)
- 木工安全责任协议书(2篇)
- 2025年厦门东海职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 2025年博尔塔拉职业技术学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025至2031年中国工程车铁片行业投资前景及策略咨询研究报告
- 市场服务行业发展趋势-深度研究
- 农业装备智能诊断模型-深度研究
- 市场化改革进程-深度研究
- 二零二五年度猪饲料行业教育培训合同
- 2025年度新型城镇化项目物业运维执行合同
- 福建省泉州市晋江市2024-2025学年七年级上学期期末生物学试题(含答案)
- 2025年春新人教版物理八年级下册课件 第十章 浮力 第4节 跨学科实践:制作微型密度计
- 财务BP经营分析报告
- 三年级上册体育课教案
- 2024年全国统一高考英语试卷(新课标Ⅰ卷)含答案
- 2025届河北衡水数学高三第一学期期末统考试题含解析
- 提高数学教师命题能力培训
- 猎聘网在线人才测评题库
- 《社区康复》课件-第八章 视力障碍患者的社区康复实践
- 透析患者的血糖管理
- 前置审方合理用药系统建设方案
评论
0/150
提交评论