




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年上海市第六十中学高三数学理模拟试卷含解析一、 选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1. 命题 p:,使得,命题q: .则下列命题中真命题为A. B.C. D. Ks5u参考答案:D略2. 设是函数f(x)=的反函数,则下列不等式中恒成立的是( ) A B C D参考答案:答案:C3. 函数y=10 x2-1 (0 x1的反函数是(A) (B)(x) (C) (x (D) (x参考答案:D 【解析】本小题主要考查反函数的求法。由得:,即。又因为时,从而有,即原函数值域为。所以原函数的反函数为,故选D。4. 设变量
2、满足约束条件的取值范围是A. B. C. D.参考答案:C做出约束条件表示的可行域如图,由图象可知。的几何意义是区域内的任一点到定点的斜率的变化范围,由图象可知,所以,即,所以取值范围是,选C.5. (1) 已知集合A = xR| |x|2, B = xR| x1, 则 (A) (B) 1,2(C) 2,2(D) 2,1参考答案:D6. 一个几何体的正视图和俯视图如图所示,其中俯视图是边长为2的正三角形及其内切圆,则侧视图的面积为() A6+B4 C6+4D44参考答案:A【考点】由三视图求面积、体积【专题】计算题;空间位置关系与距离【分析】几何体是三棱柱与球的组合体,判断三棱柱的高及底面三角
3、形的边长,计算球的半径,根据侧视图是矩形上边加一个圆,分别计算矩形与圆的面积再相加【解答】解:由三视图知:几何体是三棱柱与球的组合体,其中三棱柱的高为2,底面三角形的边长为2,根据俯视图是一个圆内切于一个正三角形,球的半径R=1,几何体的侧视图是矩形上边加一个圆,矩形的长、宽分别为2,3,圆的半径为1,侧视图的面积S=23+12=6+故选:A【点评】本题考查了由正视图与俯视图求侧视图的面积,判断数据所对应的几何量及求得相关几何量的数据是解题的关键7. 已知复数,是的共轭复数,则 = ( )A. B. C.1 D.2参考答案:A8. (5分)=() A B C D 参考答案:C【考点】: 运用诱
4、导公式化简求值【专题】: 三角函数的求值【分析】: 原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果解:sin()=sin(4+)=sin=,故选:C【点评】: 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键9. 设函数(、为常数)的图象关于直线对称,则有 ( ) A B C D 参考答案:A10. 若 ,则复数=A. B C D 5参考答案:C 二、 填空题:本大题共7小题,每小题4分,共28分11. 若方程在区间上有解,则所有满足条件的实数值的和为 参考答案:12. 如果复数的实部和虚部相等,则实数等于 。参考答案:答案: 13. 如图,是椭圆与双曲线的
5、公共焦点,A,B分别是在第二、四象限的公共点.若四边形为矩形,则的离心率是_.参考答案:14. 若函数f(x)=|2sinx+a|的最小正周期为,则实数a的值为 参考答案:015. 已知集合, 参考答案:16. 已知点p(x,y)是直线kx+y+4=0(k0)上一动点,PA、PB是圆C:x2+y22y=0的两条切线,A、B是切点,若四边形PACB的最小面积是2,则k的值为 参考答案:2考点:直线与圆的位置关系;点到直线的距离公式 专题:计算题分析:先求圆的半径,四边形PACB的最小面积是2,转化为三角形PBC的面积是1,求出切线长,再求PC的距离也就是圆心到直线的距离,可解k的值解答:解:圆C
6、:x2+y22y=0的圆心(0,1),半径是r=1,由圆的性质知:S四边形PACB=2SPBC,四边形PACB的最小面积是2,SPBC的最小值S=1=rd(d是切线长)d最小值=2圆心到直线的距离就是PC的最小值,k0,k=2故 答案为:2点评:本题考查直线和圆的方程的应用,点到直线的距离公式等知识,是中档题17. (坐标系与参数方程)已知圆C的极坐标方程为,则圆心C的一个极坐标为 参考答案: 三、 解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18. 为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛比赛规则如下,双方各出3
7、名队员并预先排定好出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者被淘汰出局,由第二号选手挑战上一局获胜的选手,依此类推,直到一方的队员全部被淘汰,另一方算获胜假若双方队员的实力旗鼓相当(即取胜对手的概率彼此相等)()在已知乙队先胜一局的情况下,求甲队获胜的概率()记双方结束比赛的局数为,求的分布列并求其数学期望E参考答案:【考点】相互独立事件的概率乘法公式;n次独立重复试验中恰好发生k次的概率;离散型随机变量的期望与方差【分析】()在已知乙队先胜一局的情况下,相当于乙校还有3名选手,而甲校还剩2名选手,甲校要想取胜,需要连胜3场,或者比赛四场要胜三场,且最后一场获胜,由
8、此能求出甲校获胜的概率()记双方结束比赛的局数为,则=3,4,5由题设条件知,由此能求出的数学期望【解答】解:()在已知乙队先胜一局的情况下,相当于乙校还有3名选手,而甲校还剩2名选手,甲校要想取胜,需要连胜3场,或者比赛四场要胜三场,且最后一场获胜,所以甲校获胜的概率是()记双方结束比赛的局数为,则=3,4,5所以的分布列为345P数学期望19. (10分)如图,已知AB为圆O的一条直径,以端点B为圆心的圆交直线AB于C、D两点,交圆O于E、F两点,过点D作垂直于AD的直线,交直线AF于H点()求证:B、D、H、F四点共圆;()若AC=2,AF=2,求BDF外接圆的半径参考答案:【考点】:
9、圆內接多边形的性质与判定;与圆有关的比例线段【专题】: 直线与圆【分析】: ()由已知条件推导出BFFH,DHBD,由此能证明B、D、F、H四点共圆(2)因为AH与圆B相切于点F,由切割线定理得AF2=AC?AD,解得AD=4,BF=BD=1,由AFBADH,得DH=,由此能求出BDF的外接圆半径()证明:因为AB为圆O一条直径,所以BFFH,(2分)又DHBD,故B、D、F、H四点在以BH为直径的圆上,所以B、D、F、H四点共圆(4分)(2)解:因为AH与圆B相切于点F,由切割线定理得AF2=AC?AD,即(2)2=2?AD,解得AD=4,(6分)所以BD=,BF=BD=1,又AFBADH,
10、则,得DH=,(8分)连接BH,由(1)知BH为DBDF的外接圆直径,BH=,故BDF的外接圆半径为(10分)【点评】: 本题考查四点共圆的证明,考查三角形处接圆半径的求法,解题时要认真审题,注意切割线定理的合理运用20. 在中,分别是角,的对边,向量,且/()求角的大小;()设,且的最小正周期为,求在区间上的最大值和最小值参考答案:略21. 随着新课程改革和高考综合改革的实施,高中教学以发展学生学科核心素养为导向,学习评价更关注学科核心素养的形成和发展为此,我市于2018年举行第一届高中文科素养竞赛,竞赛结束后,为了评估我市高中学生的文科素养,从所有参赛学生中随机抽取1000名学生的成绩(单
11、位:分)作为样本进行估计,将抽取的成绩整理后分成五组,从左到右依次记为50,60),60,70),70,80),80,90),90,100,并绘制成如图所示的频率分布直方图(1)请补全频率分布直方图并估计这1000名学生成绩的平均数(同一组数据用该组区间的中点值作代表);(2)采用分层抽样的方法从这1000名学生的成绩中抽取容量为40的样本,再从该样本成绩不低于80分的学生中随机抽取2名进行问卷调查,求至少有一名学生成绩不低于90分的概率;(3)我市决定对本次竞赛成绩排在前180名的学生给予表彰,授予“文科素养优秀标兵”称号一名学生本次竞赛成绩为79分,请你判断该学生能否被授予“文科素养优秀标
12、兵”称号参考答案:(1)67;(2);(3)能.【分析】(1)根据各小长方形的面积和为1,可以得到的频率,除以组距10,即可得到小长方形的高度,画到图中即可;(2)计算出再的人数,及再的人数,列举出所有可能,根据古典概型的计算方法,即可得到至少有一名学生成绩不低于90分的概率;(3)根据本次考试的总人数,以及表扬学生的比例,借助频率分布直方图估算出获得“文科素养优秀标兵”称号的分数,判断即可【详解】解:(1)成绩落在的频率为,补全的频率分布直方图如图:样本的平均数.(2)由分层抽样知,成绩在内的学生中抽取4人,记为,成绩在内的学生中抽取2人,记为,则满足条件的所有基本事件为:,共15个,记“至少有一名学生成绩不低于9”为事件,则事件A包含的基本事件有:,共9个故所求概率为.(3)因为,所以由频率分布直方图可以估计获得“文科素养优秀标兵”称号学生的成绩为.因为,所以该同学能被授予“文科素养优秀标兵”称号【点睛】本题考查了频率分布直方图、古典概型的概率求法、利用频率分布直方图估计某个频率段的下限,属于中档题22. (本小题满分12分)已知椭圆C:经过点 ,离心率 ,直线的方程为 .(1)求椭圆C的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工程承包劳务合同范本
- 员工福利保险合同条款协议书
- 农村个人购房合同模板版
- 土地使用权出让合同标准文本
- 校际联赛参赛学生合同条款
- 战略合作合同模板:油品采购
- 度广告宣传合同范本
- 合作开发项目合同终止协议
- 办公室装修工程设计合同
- 合同范本:房地产企业项目贷款合同
- 物业管理退场通知书(模板)
- 江苏省苏州市2025届高考仿真模拟历史试卷含解析
- DL∕T 5210.6-2019 电力建设施工质量验收规程 第6部分:调整试验
- DL∕T 712-2010 发电厂凝汽器及辅机冷却器管选材导则
- (2024年秋季版)2024年七年级道德与法治下册 4.9.1 生活需要法律教案 新人教版
- 血液透析安全注射临床实践专家共识解读课件
- 2024年湖南大众传媒职业技术学院单招职业适应性测试题库附答案
- 旅游学概论(第五版)课件 第一章 旅游学概述
- 学生课后服务活动记录表
- 义务教育信息科技课程标准(2022年版)解读
- CRRT的精细化护理
评论
0/150
提交评论