湘潭市历年中考数学试卷,2014-2021年湘潭市中考数学近八年真题汇总(含答案解析)_第1页
湘潭市历年中考数学试卷,2014-2021年湘潭市中考数学近八年真题汇总(含答案解析)_第2页
湘潭市历年中考数学试卷,2014-2021年湘潭市中考数学近八年真题汇总(含答案解析)_第3页
湘潭市历年中考数学试卷,2014-2021年湘潭市中考数学近八年真题汇总(含答案解析)_第4页
湘潭市历年中考数学试卷,2014-2021年湘潭市中考数学近八年真题汇总(含答案解析)_第5页
已阅读5页,还剩222页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2014年湖南省湘潭市中考数学试卷一、选择题1(3分)(2014湘潭)下列各数中是无理数的是()AB2C0D2(3分)(2014湘潭)下列计算正确的是()Aa+a2=a3B21=C2a3a=6aD2+=23(3分)(2014湘潭)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米A7.5B15C22.5D304(3分)(2014湘潭)分式方程的解为()A1B2C3D45(3分)(2014湘潭)如图,所给三视图的几何体是()A球B圆柱C圆锥D三棱锥6(3分)(2014湘潭)式子有意义,则x的取值范围是()Ax1Bx1Cx

2、1Dx17(3分)(2014湘潭)以下四个命题正确的是()A任意三点可以确定一个圆B菱形对角线相等C直角三角形斜边上的中线等于斜边的一半D平行四边形的四条边相等8(3分)(2014湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()A3B4C5D6二、填空题9(3分)(2014湘潭)3的相反数是 10(3分)(2014湘潭)分解因式:axa= 11(3分)(2014湘潭)未测试两种电子表的走时误差,做了如下统计平均数方差甲0.40.026乙0.40.137则这两种电子表走时稳定的是 12(3分)(2014湘潭)计算:()2|2|= 13(3分

3、)(2014湘潭)如图,直线a、b被直线c所截,若满足 ,则a、b平行14(3分)(2014湘潭)如图,O的半径为3,P是CB延长线上一点,PO=5,PA切O于A点,则PA= 15(3分)(2014湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人设到雷锋纪念馆的人数为x人,可列方程为 16(3分)(2014湘潭)如图,按此规律,第6行最后一个数字是 ,第 行最后一个数是2014三、综合解答题17(2014湘潭)在边长为1的小正方形网格中,AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为 ;(2)将AOB向左平移3个单位长

4、度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为 18(2014湘潭)先化简,在求值:(+),其中x=219(2014湘潭)如图,修公路遇到一座山,于是要修一条隧道为了加快施工进度,想在小山的另一侧同时施工为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量ABD=135,BD=800米,求直线L上距离D点多远的C处开挖?(1.414,精确到1米)20(2014湘潭)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6(1)求证:EDFCBF;(2)求EB

5、C21(2014湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由22(2014湘潭)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?23(2014湘潭)从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间

6、1小时;B、1小时上网时间4小时;C、4小时上网时间7小时;D、上网时间7小时统计结果制成了如图统计图:(1)参加调查的学生有 人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数24(2014湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1L2,则有k1k2=1(1)应用:已知y=2x+1与y=kx1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式25(2014湘潭)ABC为等边三角形,边长为a,DFAB,EFAC,(1)求证:BDFCEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为

7、何值时S取最大值;(3)已知A、D、F、E四点共圆,已知tanEDF=,求此圆直径26(2014湘潭)已知二次函数y=x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k2014年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题1(3分)(2014湘潭)下列各数中是无理数的是()AB2C0D考点:无理数分析:无理数就是无限不循环小数理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称即有限小数和无限循环小数是有理数,而无限不循环小数是无理数由此即可判定选择项解答:解:A、

8、正确;B、是整数,是有理数,选项错误;C、是整数,是有理数,选项错误;D、是分数,是有理数,选项错误故选A点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001,等有这样规律的数2(3分)(2014湘潭)下列计算正确的是()Aa+a2=a3B21=C2a3a=6aD2+=2考点:单项式乘单项式;实数的运算;合并同类项;负整数指数幂专题:计算题分析:A、原式不能合并,错误;B、原式利用负指数幂法则计算得到结果,即可做出判断;C、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;D、原式不能合并,错误解答:解:A、原式不能合并,

9、故选项错误;B、原式=,故选项正确;C、原式=6a2,故选项错误;D、原式不能合并,故选项错误故选B点评:此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键3(3分)(2014湘潭)如图,AB是池塘两端,设计一方法测量AB的距离,取点C,连接AC、BC,再取它们的中点D、E,测得DE=15米,则AB=()米A7.5B15C22.5D30考点:三角形中位线定理专题:应用题分析:根据三角形的中位线得出AB=2DE,代入即可求出答案解答:解:D、E分别是AC、BC的中点,DE=15米,AB=2DE=30米,故选D点评:本题考查了三角形的中位线的应用,注意:三角形的中位线平行于第三边,并且等于第

10、三边的一半4(3分)(2014湘潭)分式方程的解为()A1B2C3D4考点:解分式方程专题:计算题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:去分母得:5x=3x+6,移项合并得:2x=6,解得:x=3,经检验x=3是分式方程的解故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根5(3分)(2014湘潭)如图,所给三视图的几何体是()A球B圆柱C圆锥D三棱锥考点:由三视图判断几何体分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状解答:解:主视图和

11、左视图都是等腰三角形,那么此几何体为锥体,由俯视图为圆,可得此几何体为圆锥故选C点评:本题考查了由三视图判断几何体的知识,解题的关键是了解主视图和左视图的大致轮廓为长方形的几何体为锥体6(3分)(2014湘潭)式子有意义,则x的取值范围是()Ax1Bx1Cx1Dx1考点:二次根式有意义的条件专题:计算题分析:根据二次根式的被开方数是非负数列出不等式x10,通过解该不等式即可求得x的取值范围解答:解:根据题意,得x10,解得,x1故选C点评:此题考查了二次根式的意义和性质概念:式子(a0)叫二次根式性质:二次根式中的被开方数必须是非负数,否则二次根式无意义7(3分)(2014湘潭)以下四个命题正

12、确的是()A任意三点可以确定一个圆B菱形对角线相等C直角三角形斜边上的中线等于斜边的一半D平行四边形的四条边相等考点:命题与定理分析:利用确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质分别对每个选项判断后即可确定答案解答:解:A、不在同一直线上的三点确定一个圆,故错误;B、菱形的对角线垂直但不一定相等,故错误;C、正确;D、平行四边形的四条边不一定相等故选C点评:本题考查了命题与定理的知识,解题的关键是了解确定圆的条件、菱形的性质、直角三角形的性质及平行四边形的性质,难度一般8(3分)(2014湘潭)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,

13、则S1+S2=()A3B4C5D6考点:反比例函数系数k的几何意义分析:欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2解答:解:点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,S1+S2=4+412=6故选D点评:本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度二、填空题9(3分)(2014湘潭)3的相反数是3考点:相反数分析:一个数的相反数就是在这个数前面添上“”号解答:解:(3)=3,故3的

14、相反数是3故答案为:3点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“”号一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0学生易把相反数的意义与倒数的意义混淆10(3分)(2014湘潭)分解因式:axa=a(x1)考点:因式分解-提公因式法分析:提公因式法的直接应用观察原式axa,找到公因式a,提出即可得出答案解答:解:axa=a(x1)点评:考查了对一个多项式因式分解的能力一般地,因式分解有两种方法,提公因式法,公式法,能提公因式先提公因式,然后再考虑公式法要求灵活运用各种方法进行因式分解该题是直接提公因式法的运用11(3分)(2014湘潭)未测试两种电子表的

15、走时误差,做了如下统计平均数方差甲0.40.026乙0.40.137则这两种电子表走时稳定的是甲考点:方差;算术平均数分析:根据方差的意义判断,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可解答:解:甲的方差是0.026,乙的方差是0.137,0.0260.137,这两种电子表走时稳定的是甲;故答案为:甲点评:本题考查方差的意义它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立12(3分)(2014湘潭)计算:()2|2|=1考点:实数的运算专题:计算题分析:原式第一项利用平方根定义化简,第二项利用绝对值的代数意义化简,计算即可得到结果解答:解:原

16、式=32=1故答案为:1点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键13(3分)(2014湘潭)如图,直线a、b被直线c所截,若满足1=2,则a、b平行考点:平行线的判定专题:开放型分析:根据同位角相等两直线平行可得1=2时,ab解答:解:1=2,ab(同位角相等两直线平行),故答案为:1=2点评:此题主要考查了平行线的判定,关键是掌握同位角相等两直线平行14(3分)(2014湘潭)如图,O的半径为3,P是CB延长线上一点,PO=5,PA切O于A点,则PA=4考点:切线的性质;勾股定理专题:计算题分析:先根据切线的性质得到OAPA,然后利用勾股定理计算PA的长解答:解:PA切O于

17、A点,OAPA,在RtOPA中,OP=5,OA=3,PA=4故答案为4点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径也考查了勾股定理15(3分)(2014湘潭)七、八年级学生分别到雷锋、毛泽东纪念馆参观,共589人,到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人设到雷锋纪念馆的人数为x人,可列方程为2x+56=589x考点:由实际问题抽象出一元一次方程分析:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589x)人,根据到毛泽东纪念馆的人数是到雷锋纪念馆人数的2倍多56人列方程即可解答:解:设到雷锋纪念馆的人数为x人,则到毛泽东纪念馆的人数为(589x)人,由题意得,2

18、x+56=589x故答案为:2x+56=589x点评:本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,列出方程16(3分)(2014湘潭)如图,按此规律,第6行最后一个数字是16,第672行最后一个数是2014考点:规律型:数字的变化类分析:每一行的最后一个数字构成等差数列1,4,7,10,易得第n行的最后一个数字为1+3(n1)=3n2,由此求得第6行最后一个数字,建立方程求得最后一个数是2014在哪一行解答:解:每一行的最后一个数字构成等差数列1,4,7,10,第n行的最后一个数字为1+3(n1)=3n2,第6行最后一个数字是362=16;3n2=2014解得

19、n=672因此第6行最后一个数字是16,第672行最后一个数是2014故答案为:16,672点评:此题考查数字的排列规律,找出数字之间的联系,得出运算规律解决问题三、综合解答题17(2014湘潭)在边长为1的小正方形网格中,AOB的顶点均在格点上,(1)B点关于y轴的对称点坐标为(3,2);(2)将AOB向左平移3个单位长度得到A1O1B1,请画出A1O1B1;(3)在(2)的条件下,A1的坐标为(2,3)考点:作图-平移变换;关于x轴、y轴对称的点的坐标专题:作图题分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等解答;(2)根据网格结构找出点A、O、B向左平移后的对应点A1、O

20、1、B1的位置,然后顺次连接即可;(3)根据平面直角坐标系写出坐标即可解答:解:(1)B点关于y轴的对称点坐标为(3,2);(2)A1O1B1如图所示;(3)A1的坐标为(2,3)故答案为:(1)(3,2);(3)(2,3)点评:本题考查了利用平移变换作图,关于y轴对称点的坐标,熟练掌握网格结构准确找出对应点的位置是解题的关键18(2014湘潭)先化简,在求值:(+),其中x=2考点:分式的化简求值专题:计算题分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果解答:解:原式=+=,当x=2时,原式=点评:此题考查了分式的化简求值,熟练掌握运算法则是解

21、本题的关键19(2014湘潭)如图,修公路遇到一座山,于是要修一条隧道为了加快施工进度,想在小山的另一侧同时施工为了使山的另一侧的开挖点C在AB的延长线上,设想过C点作直线AB的垂线L,过点B作一直线(在山的旁边经过),与L相交于D点,经测量ABD=135,BD=800米,求直线L上距离D点多远的C处开挖?(1.414,精确到1米)考点:勾股定理的应用分析:首先证明BCD是等腰直角三角形,再根据勾股定理可得CD2+BC2=BD2,然后再代入BD=800米进行计算即可解答:解:CDAC,ACD=90,ABD=135,DBC=45,D=45,CB=CD,在RtDCB中:CD2+BC2=BD2,2C

22、D2=8002,CD=400566(米),答:直线L上距离D点566米的C处开挖点评:此题主要考查了勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图领会数形结合的思想的应用20(2014湘潭)如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,BD=6(1)求证:EDFCBF;(2)求EBC考点:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质分析:(1)首先根据矩形的性质和折叠的性质可得DE=BC,E=C=90,对顶角DFE=BFC,利用AAS可判定DEFBCF

23、;(2)在RtABD中,根据AD=3,BD=6,可得出ABD=30,然后利用折叠的性质可得DBE=30,继而可求得EBC的度数解答:(1)证明:由折叠的性质可得:DE=BC,E=C=90,在DEF和BCF中,DEFBCF(AAS);(2)解:在RtABD中,AD=3,BD=6,ABD=30,由折叠的性质可得;DBE=ABD=30,EBC=903030=30点评:本题考查了折叠的性质、矩形的性质,以及全等三角形的判定与性质,正确证明三角形全等是关键21(2014湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(

24、万元/台)1210月污水处理能力(吨/月)200160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由考点:一元一次不等式组的应用分析:(1)设购买污水处理设备A型号x台,则购买B型号(8x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可(2)计算出每一方案的花费,通过比较即可得到答案解答:解:设购买污水处理设备A型号x台,则购买B型号(8x)台,根据题意,得,解这个不等式组,得:2.5x4.5x是整数,x=3或x=4当x=3时,8x=5;当x=

25、4时,8x=4答:有2种购买方案:第一种是购买3台A型污水处理设备,5台B型污水处理设备;第二种是购买4台A型污水处理设备,4台B型污水处理设备;(2)当x=3时,购买资金为121+105=62(万元),当x=4时,购买资金为124+104=88(万元)因为8862,所以为了节约资金,应购污水处理设备A型号3台,B型号5台答:购买3台A型污水处理设备,5台B型污水处理设备更省钱点评:本题考查了一元一次不等式组的应用,本题是“方案设计”问题,一般可把它转化为求不等式组的整数解问题,通过表格获取相关信息,在实际问题中抽象出不等式组是解决这类问题的关键22(2014湘潭)有两个构造完全相同(除所标数

26、字外)的转盘A、B,游戏规定,转动两个转盘各一次,指向大的数字获胜现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?考点:列表法与树状图法分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与A大于B的有5种情况,A小于B的有4种情况,再利用概率公式即可求得答案解答:解:选择A转盘画树状图得:共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,P(A大于B)=,P(A小于B)=,选择A转盘点评:本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为

27、:概率=所求情况数与总情况数之比23(2014湘潭)从全校1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间1小时;B、1小时上网时间4小时;C、4小时上网时间7小时;D、上网时间7小时统计结果制成了如图统计图:(1)参加调查的学生有200人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数考点:条形统计图;用样本估计总体;扇形统计图分析:(1)用A的人数除以所占的百分比求出总人数;(2)用总人数减去A、B、D的人数,再画出即可;(3)用总人数乘以全校上网不超过7小时的学生人数所占的百分比即可解答:解:(1)参加调查的学生有20=200(人);故答案为:20

28、0;(2)C的人数是:200208040=60(人),补图如下:(3)根据题意得:1200=960(人),答:全校上网不超过7小时的学生人数是960人点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24(2014湘潭)已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1L2,则有k1k2=1(1)应用:已知y=2x+1与y=kx1垂直,求k;(2)直线经过A(2,3),且与y=x+3垂直,求解析式考点:两条直线相交或平行问题分析:(1)根据L

29、1L2,则k1k2=1,可得出k的值即可;(2)根据直线互相垂直,则k1k2=1,可得出过点A直线的k等于3,得出所求的解析式即可解答:解:(1)L1L2,则k1k2=1,2k=1,k=;(2)过点A直线与y=x+3垂直,设过点A直线的直线解析式为y=3x+b,把A(2,3)代入得,b=3,解析式为y=3x3点评:本题考查了两直线相交或平行问题,是基础题,当两直线垂直时,两个k值的乘积为125(2014湘潭)ABC为等边三角形,边长为a,DFAB,EFAC,(1)求证:BDFCEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(3

30、)已知A、D、F、E四点共圆,已知tanEDF=,求此圆直径考点:相似形综合题;二次函数的最值;等边三角形的性质;圆周角定理;解直角三角形专题:综合题;探究型分析:(1)只需找到两组对应角相等即可(2)四边形ADFE面积S可以看成ADF与AEF的面积之和,借助三角函数用m表示出AD、DF、AE、EF的长,进而可以用含m的代数式表示S,然后通过配方,转化为二次函数的最值问题,就可以解决问题(3)易知AF就是圆的直径,利用圆周角定理将EDF转化为EAF在AFC中,知道tanEAF、C、AC,通过解直角三角形就可求出AF长解答:解:(1)DFAB,EFAC,BDF=CEF=90ABC为等边三角形,B

31、=C=60BDF=CEF,B=C,BDFCEF(2)BDF=90,B=60,sin60=,cos60=BF=m,DF=m,BD=AB=4,AD=4SADF=ADDF=(4)m=m2+m同理:SAEF=AEEF=(4)(4m)=m2+2S=SADF+SAEF=m2+m+2=(m24m8)=(m2)2+3其中0m40,024,当m=2时,S取最大值,最大值为3S与m之间的函数关系为:S(m2)2+3(其中0m4)当m=2时,S取到最大值,最大值为3(3)如图2,A、D、F、E四点共圆,EDF=EAFADF=AEF=90,AF是此圆的直径tanEDF=,tanEAF=C=60,=tan60=设EC=

32、x,则EF=x,EA=2xAC=a,2x+x=ax=EF=,AE=AEF=90,AF=此圆直径长为点评:本题考查了相似三角形的判定、二次函数的最值、三角函数、解直角三角形、圆周角定理、等边三角形的性质等知识,综合性强利用圆周角定理将条件中的圆周角转化到合适的位置是解决最后一小题的关键26(2014湘潭)已知二次函数y=x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k考点:二次函数综合题分析:(1)由对称轴为x=,且函数过(0,0),则可推出b,c,进而得函数解析式(2)=,且两三角形为同高

33、不同底的三角形,易得=,考虑计算方便可作B,C对x轴的垂线,进而有B,C横坐标的比为=由B,C为直线与二次函数的交点,则联立可求得B,C坐标由上述倍数关系,则k易得(3)以BC为直径的圆经过原点,即BOC=90,一般考虑表示边长,再用勾股定理构造方程求解k可是这个思路计算量异常复杂,基本不考虑,再考虑(2)的思路,发现B,C横纵坐标恰好可表示出EB,EO,OF,OC而由BOC=90,易证EBOFOC,即EBFC=EOFO有此构造方程发现k值大多可约去,进而可得k值解答:解:(1)二次函数y=x2+bx+c的对称轴为x=2,且经过原点,=2,0=0+0+c,b=4,c=0,y=x2+4x(2)如

34、图1,连接OB,OC,过点A作AEy轴于E,过点B作BFy轴于F,=,=,=,EBFC,=y=kx+4交y=x2+4x于B,C,kx+4=x2+4x,即x2+(k4)x+4=0,=(k4)244=k28k,x=,或x=,xBxC,EB=xB=,FC=xC=,4=,解得 k=9(交点不在y轴右边,不符题意,舍去)或k=1k=1(3)BOC=90,EOB+FOC=90,EOB+EBO=90,EBO=FOC,BEO=OFC=90,EBOFOC,EBFC=EOFOxB=,xC=,且B、C过y=kx+4,yB=k+4,yC=k+4,EO=yB=k+4,OF=yC=k4,=(k+4)(k4),整理得 16

35、k=20,k=点评:本题考查了函数图象交点的性质、相似三角形性质、一元二次方程及圆的基本知识题目特殊,貌似思路不难,但若思路不对,计算异常复杂,题目所折射出来的思想,考生应好好理解掌握2015年湖南省湘潭市中考数学试卷一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1在数轴上表示2的点与表示3的点之间的距离是()A5B5C1D12(3分)(2015湘潭)下面四个立体图形中,三视图完全相同的是()ABCD3(3分)(2015湘潭)下列计算正确的是()AB31=3C(a4)2=a8Da6a2=a34(3分)(2015湘

36、潭)在ABC中,D、E为边AB、AC的中点,已知ADE的面积为4,那么ABC的面积是()A8B12C16D205(3分)(2015湘潭)下列四个命题中,真命题是()A“任意四边形内角和为360”是不可能事件B“湘潭市明天会下雨”是必然事件C“预计本题的正确率是95%”表示100位考生中一定有95人做对D抛掷一枚质地均匀的硬币,正面朝上的概率是6(3分)(2015湘潭)如图,已知直线ABCD,且直线EF分别交AB、CD于M、N两点,NH是MND的角平分线若AMN=56,则MNH的度数是()A28B30C34D567(3分)(2015湘潭)如图,四边形ABCD是O的内接四边形,若DAB=60,则B

37、CD的度数是()A60B90C100D1208(3分)(2015湘潭)如图,观察二次函数y=ax2+bx+c的图象,下列结论:a+b+c0,2a+b0,b24ac0,ac0其中正确的是()ABCD二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9(3分)(2015湘潭)的倒数是 10(3分)(2015湘潭)计算:23(2)= 11(3分)(2015湘潭)在今年的湘潭市“党和人民满意的好老师”的评选活动中,截止到5月底,王老师获得网络点赞共计183000个,用科学记数法表示这个数为 12(3分)(2015湘潭)高一新生入学军训射击训练中,小张同学的射击成绩(单

38、位:环)为:5、7、9、10、7,则这组数据的众数是 13(3分)(2015湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元如果某日杜鹃园售出门票100张,门票收入共4000元那么当日售出成人票 张14(3分)(2015湘潭)已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个菱形的边长为 cm15(3分)(2015湘潭)如图,将ABC绕点A顺时针旋转60得到AED,若线段AB=3,则BE= 16(3分)(2015湘潭)小华为参加毕业晚会演出,准备制一顶圆锥形彩色纸帽,如图所示,如果纸帽的底面半径为8cm,母线长为25cm,那么制作这顶纸帽至少

39、需要彩色纸板的面积为 cm2(结果保留)三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17(6分)(2015湘潭)解不等式组:18(6分)(2015湘潭)先化简,再求值:(1),其中x=+119(6分)(2015湘潭)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30,已知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮

40、物的正上方?(结果精确到0.1,1.73)20(6分)(2015湘潭)2015年湘潭市中考招生政策发生较大改变,其中之一是:省级示范性高中批次志愿中,每个考生可填报两所学校(有先后顺序),我市某区域的初三毕业生可填报的省级示范性高中有A、B、C、D四所(1)请列举出该区域学生填报省级示范性高中批次志愿的所有可能结果;(2)求填报方案中含有A学校的概率21(6分)(2015湘潭)水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区

41、5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:用户月用水量频数分布表平均用水量(吨)频数频率36吨100.169吨m0.2912吨360.361215吨25n1518吨90.09请根据上面的统计图表,解答下列问题:(1)在频数分布表中:m= ,n= ;(2)根据题中数据补全频数直方图;(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?22(6分)(2015湘潭)如图,在RtABC中,C=90,ACD沿

42、AD折叠,使得点C落在斜边AB上的点E处(1)求证:BDEBAC;(2)已知AC=6,BC=8,求线段AD的长度23(8分)(2015湘潭)如图,已知一次函数y=x+b与反比例函数y=的图象交于A、B两点,其中点A的坐标为(2,3)(1)求一次函数与反比例函数的解析式;(2)求点B的坐标;(3)请根据图象直接写出不等式x+b的解集24(8分)(2015湘潭)阅读材料:用配方法求最值已知x,y为非负实数,x+y20 x+y2,当且仅当“x=y”时,等号成立示例:当x0时,求y=x+4的最小值解:+4=6,当x=,即x=1时,y的最小值为6来源:Zxxk.Com(1)尝试:当x0时,求y=的最小值

43、(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为万元问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=)?最少年平均费用为多少万元?25(10分)(2015湘潭)如图,已知AB是O的直径,过点A作O的切线MA,P为直线MA上一动点,以点P为圆心,PA为半径作P,交O于点C,连接PC、OP、BC(1)知识探究(如图1):判断直线PC与O的位置关系,请证明你的结论;判断直线OP与BC的位置关系,请证明你的结论(2)知识运用(如图2):当P

44、AOA时,直线PC交AB的延长线于点D,若BD=2AB,求tanABC的值26(10分)(2015湘潭)如图,二次函数y=x2+bx+c的图象交x轴于A(1,0)、B(3,0)两点,交y轴于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒(1)求二次函数的解析式;(2)如图1,当BPQ为直角三角形时,求t的值;(3)如图2,当t2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由

45、2015年湖南省湘潭市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题有且只有一个正确答案,请将正确答案的选项代号涂在答题卡相应的位置上,每小题3分,满分24分)1在数轴上表示2的点与表示3的点之间的距离是()A5B5C1D1考点:数轴. 分析:根据正负数的运算方法,用3减去2,求出在数轴上表示2的点与表示3的点之间的距离为多少即可解答:解:3(2)=2+3=5所以在数轴上表示2的点与表示3的点之间的距离为5故选A点评:此题主要考查了正负数的运算方法,关键是根据在数轴上表示2的点与表示3的点之间的距离列出式子2(3分)(2015湘潭)下面四个立体图形中,三视图完全相同的是()

46、ABCD考点:简单几何体的三视图. 分析:根据三视图的概念求解解答:解:A、主视图、左试图是矩形,俯视图是圆,故A错误;B、主视图、左视图、俯视图都是圆,故B正确;C、主视图、左视图都是三角形,俯视图是圆,故C错误;D、主视图、俯视图都是矩形,左视图是三角形,故D错误;故选:B点评:本体考查了简单几何体的三视图,从正面看得到的视图是主视图,从左边看得到的视图是左视图,从上面看得到的视图是俯视图3(3分)(2015湘潭)下列计算正确的是()AB31=3C(a4)2=a8Da6a2=a3考点:幂的乘方与积的乘方;同底数幂的除法;负整数指数幂;二次根式的加减法. 分析:A不是同类二次根式,不能合并;

47、B依据负整数指数幂的运算法则计算即可;C依据幂的乘方法则计算即可;D依据同底数幂的除法法则计算即可解答:解:A不是同类二次根式,不能合并,故A错误;B,故B错误;C(a4)2=a42=a8,故C正确;Da6a2=a62=a4,故D错误故选:C点评:本题主要考查的是数与式的运算,掌握同类二次根式的定义、负整数指数幂、积的乘方、幂的乘方的运算法则是解题的关键4(3分)(2015湘潭)在ABC中,D、E为边AB、AC的中点,已知ADE的面积为4,那么ABC的面积是()A8B12C16D20考点:相似三角形的判定与性质;三角形中位线定理. 分析:由条件可以知道DE是ABC的中位线,根据中位线的性质就可

48、以求出,再根据相似三角形的性质就可以得出结论解答:解:D、E分别是AB、AC的中点,DE是ABC的中位线,DEBC,ADEABC,ADE的面积为4,SABC=16故选:C点评:本题考查中位线的判定及性质的运用,相似三角形的判定及性质的运用,解答时证明ADEABC是解答本题的关键5(3分)(2015湘潭)下列四个命题中,真命题是()A“任意四边形内角和为360”是不可能事件B“湘潭市明天会下雨”是必然事件C“预计本题的正确率是95%”表示100位考生中一定有95人做对D抛掷一枚质地均匀的硬币,正面朝上的概率是考点:命题与定理. 分析:根据四边形内角和和不可能事件的定义对A进行判断;根据必然事件的

49、定义对B进行判断;根据估计的含义对C进行判断;根据概率的定义对D进行判断解答:解:A、“任意四边形内角和为360”是必然事件,错误;B、“湘潭市明天会下雨”是随机事件,错误;C、“预计本题的正确率是95%”表示100位考生中不一定有95人做对,错误;D、抛掷一枚质地均匀的硬币,正面朝上的概率是,正确故选D点评:本题考查了命题与定理:判断一件事情的语句,叫做命题许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果那么”形式有些命题的正确性是用推理证实的,这样的真命题叫做定理6(3分)(2015湘潭)如图,已知直线ABCD,且直线EF分别交AB、C

50、D于M、N两点,NH是MND的角平分线若AMN=56,则MNH的度数是()A28B30C34D56考点:平行线的性质. 分析:先根据平行线的性质求出MND的度数,再由角平分线的定义即可得出结论解答:解:直线ABCD,AMN=56,MND=AMN=56NH是MND的角平分线,MNH=MND=28故选A点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等7(3分)(2015湘潭)如图,四边形ABCD是O的内接四边形,若DAB=60,则BCD的度数是()A60B90C100D120考点:圆内接四边形的性质. 分析:根据圆内接四边形的性质:圆内接四边形的对角互补,求解解答:解:四边形

51、ABCD是O的内接四边形,DAB+DCB=180DAB=60,BCD=18060=120故选D点评:本题考查了圆内接四边形的性质:解答本题的关键是掌握圆内接四边形的对角互补的性质8(3分)(2015湘潭)如图,观察二次函数y=ax2+bx+c的图象,下列结论:a+b+c0,2a+b0,b24ac0,ac0其中正确的是()ABCD考点:二次函数图象与系数的关系. 分析:令x=1代入可判断;由对称轴x=的范围可判断;由图象与x轴有两个交点可判断;由开口方向及与x轴的交点可分别得出a、c的符号,可判断解答:解:由图象可知当x=1时,y0,a+b+c0,故不正确;由图象可知01,1,又开口向上,a0,

52、b2a,2a+b0,故正确;由图象可知二次函数与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,0,即b24ac0,故正确;由图象可知抛物线开口向上,与y轴的交点在x轴的下方,a0,c0,ac0,故不正确;综上可知正确的为,故选C点评:本题主要考查二次函数的图象和性质,掌握二次函数的开口方向、对称轴、与x轴的交点等知识是解题的关键二、填空题(本题共8个小题,请将答案写在答题卡相应的位置上,每小题3分,满分24分)9(3分)(2015湘潭)的倒数是2考点:倒数. 分析:根据倒数的定义,的倒数是2解答:解:的倒数是2,故答案为:2点评:此题主要考查了倒数的定义:若两个数的乘积是1,我

53、们就称这两个数互为倒数10(3分)(2015湘潭)计算:23(2)=10考点:有理数的乘方;有理数的减法. 分析:根据有理数的混合计算解答即可解答:解:23(2)=8+2=10故答案为:10点评:此题考查有理数的乘方,关键是根据有理数的乘方得出23=8,再与2相加11(3分)(2015湘潭)在今年的湘潭市“党和人民满意的好老师”的评选活动中,截止到5月底,王老师获得网络点赞共计183000个,用科学记数法表示这个数为1.83105考点:来源:学&科&网科学记数法表示较大的数. 分析:科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多

54、少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解答:解:将183000用科学记数法表示为1.83105故答案为1.83105点评:本题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值12(3分)(2015湘潭)高一新生入学军训射击训练中,小张同学的射击成绩(单位:环)为:5、7、9、10、7,则这组数据的众数是7考点:众数. 分析:根据众数的定义即可求解解答:解:这组数据的众数是7故答案为:7点评:本题主要考查了众数的概念关键是根据众数是一组数据中出现次数最多的数据,注

55、意众数可以不止一个13(3分)(2015湘潭)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元如果某日杜鹃园售出门票100张,门票收入共4000元那么当日售出成人票50张考点:一元一次方程的应用. 分析:根据总售出门票100张,共得收入4000元,可以列出方程求解即可解答:解:设当日售出成人票x张,儿童票(100 x)张,可得:50 x+30(100 x)=4000,解得:x=50答:当日售出成人票50张故答案为:50点评:此题考查一元一次方程的应用,本题解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解14(3分)(2015湘

56、潭)已知菱形ABCD的面积为24cm2,若对角线AC=6cm,则这个菱形的边长为5cm考点:菱形的性质. 分析:根据菱形的面积等于对角线乘积的一半可求出另一条对角线BD的长然后根据勾股定理即可求得边长解答:解:菱形ABCD的面积=ACBD,菱形ABCD的面积是24cm2,其中一条对角线AC长6cm,另一条对角线BD的长=8cm;边长是:=5cm故答案为:5点评:本题考查了菱形的性质菱形被对角线分成4个全等的直角三角形,以及菱形的面积的计算,理解菱形的性质是关键15(3分)(2015湘潭)如图,将ABC绕点A顺时针旋转60得到AED,若线段AB=3,则BE=3考点:旋转的性质. 分析:根据旋转的

57、性质得出BAE=60,AB=AE,得出BAE是等边三角形,进而得出BE=3即可解答:解:将ABC绕点A顺时针旋转60得到AED,BAE=60,AB=AE,BAE是等边三角形,BE=3故答案为:3点评:本题考查旋转的性质,关键是根据旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变要注意旋转的三要素:定点旋转中心;旋转方向;旋转角度16(3分)(2015湘潭)小华为参加毕业晚会演出,准备制一顶圆锥形彩色纸帽,如图所示,如果纸帽的底面半径为8cm,母线长为25cm,那么制作这顶纸帽至少需要彩色纸板的面积为200cm2(结果保留)考点:圆锥的计算. 分析:圆锥的侧面积=底面周长母线长2

58、解答:解:底面半径为8cm,则底面周长=16,侧面面积=1625=200cm2故答案为200点评:本题考查了圆锥的计算,利用了圆的周长公式和扇形面积公式,熟练记忆圆锥的侧面积计算公式是解决本题的关键三、解答题(本大题共10个小题,解答应写出文字说明、证明过程或演算步骤,请将解答过程写在答题卡相应位置上,满分72分)17(6分)(2015湘潭)解不等式组:考点:解一元一次不等式组. 分析:先求出两个不等式的解集,再求其公共解解答:解:,由得,x2,由得,x3所以,不等式组的解集为2x3点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小

59、,大小小大中间找,大大小小找不到(无解)18(6分)(2015湘潭)先化简,再求值:(1),其中x=+1考点:分式的化简求值. 分析:首先将小括号内的部分进行通分、计算,然后将除法转化为乘法,接下来再进行分解、约分,最后代数求值即可解答:解:原式=,将x=+1代入得:原式=点评:本题主要考查的是分式的化简与计算,掌握分式的通分、约分、分式的减法、分式的乘法、除法法则是解题的关键19(6分)(2015湘潭)“东方之星”客船失事之后,本着“关爱生命,救人第一”的宗旨搜救部门紧急派遣直升机到失事地点进行搜救,搜救过程中,假设直升机飞到A处时,发现前方江面上B处有一漂浮物,从A测得B处的俯角为30,已

60、知该直升机一直保持在距江面100米高度飞行搜索,飞行速度为10米每秒,求该直升机沿直线方向朝漂浮物飞行多少秒可到达漂浮物的正上方?(结果精确到0.1,1.73)考点:解直角三角形的应用-仰角俯角问题. 分析:作ADBD于点D,由题意得:ABC=30,AD=100米,在RtABD中,=tanABC,求得BD的长后除以速度即可得到时间解答:解:作ADBD于点D,由题意得:ABC=30,AD=100米,在RtABD中,=tanABC,来源:学#科#网Z#X#X#KBD=100米,飞行速度为10米每秒,飞行时间为10010=1017.3秒,该直升机沿直线方向朝漂浮物飞行17.3秒可到达漂浮物的正上方点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论