心理统计简要概述_第1页
心理统计简要概述_第2页
心理统计简要概述_第3页
心理统计简要概述_第4页
心理统计简要概述_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、心理统计=陈毅文中国科学院心理研究所社会与经济行为研究中心心理统计描述统计描述统计学要紧研究如何整理科学实验或调查得来的大量数据,通过图表的形式描述一组数据的全貌,并计算出一些统计特征 推断统计 推断统计学是研究如何依照样本数据去推断总体数量特征的方法。它是在对样本数据进行描述的基础上,对统计总体的未知数量特征作出以概率形式表达的推断。 描述统计统计图表集中量数差异量数相对量数相关量数1-1、统计图表数据分组:单变量值分组、组距分组次数分布表:次数、累积次数、相对次数、累积相对次数、百分比、累积百分比统计图:条形图、圆形图、累积次数分布图、累积百分比图、直方图、次数多边形图、散点图、线形图1-

2、2、集中量数平均数算术平均数加权平均数几何平均数调和平均数众数中数算术平均数总体平均数样本平均数 算术平均数的性质 算术平均数要紧适用于等距以上数据,但不适用于类不数据和顺序数据。优点是反应灵敏、计算简单、符合代数方法进一步演算、较少受抽样变动的阻碍;缺点是易受极端值的阻碍;加权平均数:用于分组数据1、组距分组数据 设原始数据被分成K组,各组的组中值分不为X1,X2,XK,各组变量值出现的频数分不为F1,F2,FK,则均值为:2、单变量值分组几何平均数调和平均数众数 众数是一组数据中出现次数最多的变量值。用Mo表示,它是一个位置代表值,要紧用于测度定类数据的集中趋势,也适用于定序、定距和定比数

3、据的集中趋势的测度值。优点是不受极端值的阻碍,缺点是可能不唯一中数中数也叫中位数,是一组数据中按从小到大排序后,处于中间位置上的变量值。它将全部数据分成两部分,每个部分各包含50%的数据。中位数是一个位置代表值,它要紧用于测度顺序数据的集中趋势。也适用于等距以上数据。但不适用于类不数据。将全部数据排序后,假如项数是奇数,则正中央的那一项即为中位数;假如项数是偶数,则正中央的那两项的平均值即为中位数。1-3、差异量数离差与平均差方差与标准差变异系数离差与平均差离差:也叫离均差,平均差:也称平均离差,是各变量值与其均值离差绝对值的平均数,用MD表示。计算公式为:方差与标准差方差是各变量值与其均值离

4、差平方和的平均数,是测度等距以上数据离散程度的最要紧方法。标准差是方差的平方根总体方差和标准差样本方差与标准差方差、标准差的性质:(1)若y=x+c , x和y是随机变量,c为常数, 则(2)若y=cx, c为常数, 则样本方差与总体方差的区不:(1)在计算上,总体方差是用数据个数或总频数去除离差平方和,而样本方差则用样本数据个数或总频数减一去除离差平方和;(2)样本方差是统计量,用S2表示;总体方差是总体参数,用2表示。(3)当n专门大时,S2与2相差专门小,前者是后者的无偏可能。变异系数也称离散系数,标准差系数,是一组数据的标准差与其相应的均值之比。变异系数指出了标准差相关于平均值的大小,

5、用于比较不同总体或样本数据的离散程度。变异系数可用于同一团体不同测量的变异的比较,也可用于不同团体同一测量的变异的比较。1-4 相对量数百分位数百分等级标准分数百分位数次数分布中对应于某个特定百分点的原始分数。第m百分位是如此一个值,它使得至少有m%的数据小于或等于那个值,且至少有(100-m)%的数据项大于或等于那个值。百分等级分数 次数分布中低于某个原始分数的次数百分比,用PR表示。 求百分位分数是先确定某个百分点m,然后去求相应的百分位分数Pm 。而求百分等级分数正好相反,事先明白次数分布中的一个原始分数,再求该分数在分布中所处的相对位置。标准分数标准分数也叫Z分数,它是以标准差为单位,

6、能够给出一个原始分数在一组数据中的相对位置。Z分数的应用:比较分属性质不同的观测值在各自数据分布中相对位置的高低。当已知各不同质的观测值的次数分布为正态时,可用Z分数求不同的观测值的总和或平均值,以表明在总体中的位置。表示标准测验分数 z=az+b异常值(极端值)的取舍由标准分数能够计算出原始分数x=+z相关量数积差相关等级相关肯德尔和谐系数点二列相关二列相关 相关相关相关的含义正相关、负相关和零相关相关系数如何通过散点图直观地推断两个变量的相关计算相关系数时应该注意的问题相关系数受样本容量n的阻碍,样本相关系数需要检验存在相关关系不一定存在因果关系没有线性相关,不一定没有关系,可能是非线性的

7、。 积差相关适用条件:两变量等距、正态同时具有线性关系斯皮尔曼等级相关适用条件顺序量表的数据等距、等比数据而总体非正态优缺点对总体没有特不要求,适用面广与积差相关相比,精度稍差肯德尔和谐系数适合于k个评价者对n个被评价事物进行等级评价的资料。计算评价者一致性系数点二列相关适用资料:两列变量中一列为等距或等比的测量数据而且总体分布为正态,另一列变量为类不(名义)变量,分为两类可用于判不是非选择测验题目的区分度计算公式二列相关适用于两列变量都为正态等距变量,但其中一列变量被人为地划分成两类。二列相关与点二列相关的要紧区不在于二分变量是否正态 相关相关的适用资料是除四分相关之外的四格表资料,是表示两

8、二分变量相关程度最常用的一种相关系数。推断统计推断统计基础参数可能假设检验方差分析回归分析卡方检验非参数检验2-1 推断统计基础概率基础正态分布二项分布抽样原理与抽样方法抽样分布1、概率基础试验与事件事件的概率定义常用排列组合公式概率的性质与运算法则条件概率与独立事件加法公式、乘法公式常用排列组合公式:概率的性质与运算法则概率的性质与运算法则概率的性质非负性。对任意事件A, 0 P(A)1规范性。必定事件的概率为1,不可能事件的概率为0。P()1,P()0可加性。若A,B互斥,则P(AB)P(A)P(B)概率运算()( A)加法公式: P( AB)P(A)P(B)P(AB)条件概率与独立事件条

9、件概率:当某一事件B已知发生时,求事件A发生的概率,称为事件B发生条件下事件A发生的条件概率,记为P(A|B)。 乘法公式: P(AB)=P(B)P(A|B) P(AB)=P(A)P(B|A)独立事件两个事件中不论哪个事件发生与否并不阻碍另一个事件发生的概率,称这两个事件相互独立。两个事件A、B是相互独立的,当且仅当,P(AB)=P(A)P(B)独立事件与相斥事件的区不2、正态分布一般正态分布的图形特点标准正态分布一般正态分布的标准化转换标准正态分布表及其应用图形特点1) f(x)0,整个密度函数都在x轴的上方;2)曲线对称,平均数,中数,众数三者相等,x= 处达到最大值3)曲线的陡缓程度由决

10、定, 越大,曲线越平缓; 越小,曲线越陡峭。X趋向于无穷时,曲线以x轴为其渐近线。4)正态曲线下面的面积为1,平均数左右各为0.5;5)正态分布曲线下,标准差与概率(面积)有一定的关系: 1 内,概率为0.6826; 2内,概率为0.9545; 3内,概率为0.9973标准正态分布=0, =1时,有相应的正态分布N(0,1)称为标准正态分布(Standard normal distribution). 通常用(x)表示概率密度函数。任何一个一般的正态分布都能够通过线性变换转化为标准正态分布.正态分布表即:标准正态分布函数(x)的数值表;将一般正态分布化为标准正态分布,通过查表可解决正态分布的概

11、率计算问题。使用正态分布表可作如下计算:1)依据Z分数求概率; 如Z=1时,p=0.34132)明白概率求Z分数;如p=0.2517时,Z=0.683)已知概率或Z分数,求概率密度值f(x)4)明白Z分数,求原始分数,x=.+Z3、二项分布二项分布的定义及满足的条件二项分布的概率计算公式二项分布的总体均值与方差用二项分布解决实际问题二项分布的定义及满足的条件1)试验中包含了n个相同的试验;2)每一次试验只有两个可能的结果,“成功”和“ 失败”; 3)出现“ 成功”的概率p是相同的,“失败”的概率q也不变; p+q=14)试验是相互独立的。符合上述条件的n次重复独立的试验为n重贝努里试验(Ber

12、noulli trials)或二项试验。二项分布的概率计算公式X表示n次重复独立试验中事件A(成功)出现的次数二项分布的期望值和方差E(X)npD(X)=npq4、抽样原理与抽样方法总体、个体、样本、样本容量参数与统计量的区不和联系,常见的参数与对应的统计量。几种抽样方法:简单随机抽样、分层抽样、整群抽样、系统抽样5、抽样分布抽样分布的含义样本均值分布及其中心极限定理几种常见的抽样分布:样本均值分布、样本方差的分布、样本方差比的分布几种常见的理论分布:正态分布、t分布、卡方分布和F分布,同时能熟练查上述四个表。中心极限定理(Central Limit theorem):设从均值为,方差为2(有

13、限)的任意一个总体中抽取大小为的样本,当充分大时(n30),样本均值X的抽样分布近似服从均值为,方差为2/的正态分布。样本方差的分布设X1,X2,,Xn为来自正态分布N(,2)的样本,则从数学上能够推导出正态总体下样本方差S2的分布为:2-2 参数可能点可能、区间可能与标准误总体平均值的可能标准差与方差的可能1、点可能、区间可能与标准误点可能、区间可能的定义,二者的优缺点及联系一个好的点可能应满足的条件:一致性、无偏性、有效性和充分性置信度、置信区间、显著性水平标准误:广义-统计量的标准差;狭义-样本均值分布的标准差2、总体平均值的可能方差已知总体正态或总体非正态,大样本n30 方差未知 总体

14、正态 总体非正态,大样本n303、标准差与方差的可能要求X服从正态分布总体方差的可能总体标准差的可能2-3 假设检验假设检验的原理样本与总体平均数差异的检验两样本平均数差异的检验方差齐性检验相关系数的显著性检验1、假设检验的原理区间可能与假设检验的关系假设检验中的小概率原理零假设与备择假设两类错误单侧检验和双侧检验,区分它们并注意二者临界值的不同假设检验的一般步骤假设检验的步骤:1. 建立原假设和备择假设;2. 确定适当的检验统计量;3. 指定检验中的显著性水平;4.利用显著性水平依照检验统计量的值建立拒绝原假设的规则;5.搜集样本数据,计算检验统计量的值;6.作出统计决策将检验统计量的值与拒

15、绝规则所指定的临界值相比较,确定是否拒绝原假设。 2、样本与总体平均数差异的检验零假设和备择假设:H0: 0, H1: 0方差已知,总体正态或非正态大样本,方差未知总体正态总体非正态3、两样本平均数差异的检验零假设与备择假设H0: 12, H1: 12方差已知 独立样本 总体正态或非正态大样本 相关样本 总体正态或非正态大样本 方差未知总体正态独立样本方差相等方差不等相关样本总体非正态,大样本独立样本 相关样本4、方差齐性检验一个未知总体方差与一个已知总体方差的检验两个未知总体方差的检验5、相关系数的显著性检验H0:0 H0: 0 H0:1 2 2-4 方差分析方差分析的原理与差不多过程完全随

16、机设计的方差分析随机区组设计的方差分析两因素方差分析事后检验1、方差分析的原理与差不多过程因素、因素水平、因变量、平方和、自由度、均方零假设、备择假设变异的分解方差分析的步骤方差分析应满足的条件方差分析应满足的条件(1) 总体正态分布总体、每个子总体服从正态分布;(2) 变异的可加性 总变异能够分解成几个不同来源的部分,这几个部分变异的来源在意义上必须明确,而且彼此要相互独立。(3) 各处理内的方差一致(方差齐性) 总体、各子总体的方差相等。各实验处理内的方差彼此应无显著差异。这是方差分析中最重要的假定。若不能满足,原则上不能进行方差分析。方差分析的步骤1、建立假设2、求平方和3、确定自由度4

17、、求均方5、进行F检验6、列出方差分析表2、单因素完全随机设计的方差分析SSt=SSb+SSW3、随机化区组设计的方差分析的步骤:(1)建立假设H10:所有个出来的总体平均数是相同的,即不存在处理效应。H20:个区组的总体平均数是相同的,即不存在区组效应。(2)求平方和(3) 自由度(4) 均方(5) 进行F检验(6) 列出方差分析表随机区组设计(单因素)的方差分析表变异来源平方和自由度均方F临界值F处理(组间)SSbk-1MSb= SSb /(k-1)Fb= MSb / MSe区组SSra-1MSr= SSr /(a-1)Fr= MSr / MSe误差SSe(k-1)(a-1)MSe= SSe /(k-1)(a-1)总变异SStN-14、两因素方差分析几个差不多概念(1)因素和水平(2)主效应与交互作用(3)总平方和的分解(4)简单效应在两因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论