2021-2022学年广东省深圳市光明新区中考考前最后一卷数学试卷含解析及点睛_第1页
2021-2022学年广东省深圳市光明新区中考考前最后一卷数学试卷含解析及点睛_第2页
2021-2022学年广东省深圳市光明新区中考考前最后一卷数学试卷含解析及点睛_第3页
2021-2022学年广东省深圳市光明新区中考考前最后一卷数学试卷含解析及点睛_第4页
2021-2022学年广东省深圳市光明新区中考考前最后一卷数学试卷含解析及点睛_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡

2、一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )A方差B中位数C众数D平均数2已知a,b,c在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c+2b|的结果是( )A4b+2cB0C2cD2a+2c3一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD4如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时

3、反射角等于入射角当点P第2018次碰到矩形的边时,点P的坐标为( )A(1,4)B(7,4)C(6,4)D(8,3)5抢微信红包成为节日期间人们最喜欢的活动之一对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图根据如图提供的信息,红包金额的众数和中位数分别是()A20,20B30,20C30,30D20,306多项式ax24ax12a因式分解正确的是( )Aa(x6)(x+2)Ba(x3)(x+4)Ca(x24x12)Da(x+6)(x2)7计算:得()A-B-C-D8的值是()A1B1C3D39若xy,则下列式子错误的是( )Ax3y3B3x3yCx+3y+3D10有三张正

4、面分别标有数字2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )ABCD11如图,A、B、C、D是O上的四点,BD为O的直径,若四边形ABCO是平行四边形,则ADB的大小为()A30B45C60D7512如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是()A0个B1个或2个C0个、1个或2个D只有1个二、填空题:(本大题共6个小题,每小题4分,共

5、24分)13如图,把一个直角三角尺ACB绕着30角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合连接CD,则BDC的度数为_度14如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC若B=56,C=45,则游客中心A到观景长廊BC的距离AD的长约为_米(sin560.8,tan561.5)15若xay与3x2yb是同类项,则ab的值为_16写出经过点(0,0),(2,0)的一个二次函数的解析式_(写一个即可)17计算(5ab3)2的结果等于_182017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、

6、n的式子表示AB的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)中华文明,源远流长;中华汉字,寓意深广为了传承中华民族优秀传统文化,我市某中学举行“汉字听写”比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整请你根据统计图解答下列问题:参加比赛的学生共有_名;在扇形统计图中,m的值为_,表示“D等级”的扇形的圆心角为_度;组委会决定从本次比赛获得A等级的学生中,选出2名去参加全市中学生“汉字听写”大赛已知A等级学生中男生有1名,请用列表法或画树状图法求出所选2名学生

7、恰好是一名男生和一名女生的概率20(6分)如图,在ABC中,点D在边BC上,联结AD,ADB=CDE,DE交边AC于点E,DE交BA延长线于点F,且AD2=DEDF(1)求证:BFDCAD;(2)求证:BFDE=ABAD21(6分)我市某外资企业生产的一批产品上市后30天内全部售完,该企业对这批产品上市后每天的销售情况进行了跟踪调查其中,国内市场的日销售量y1(万件)与时间t(t为整数,单位:天)的部分对应值如下表所示而国外市场的日销售量y2(万件)与时间t(t为整数,单位:天)的关系如图所示(1)请你从所学过的一次函数、二次函数和反比例函数中确定哪种函数能表示y1与t的变化规律,写出y1与t

8、的函数关系式及自变量t的取值范围;(2)分别探求该产品在国外市场上市20天前(不含第20天)与20天后(含第20天)的日销售量y2与时间t所符合的函数关系式,并写出相应自变量t的取值范围;(3)设国内、外市场的日销售总量为y万件,写出y与时间t的函数关系式,并判断上市第几天国内、外市场的日销售总量y最大,并求出此时的最大值22(8分)在平面直角坐标系xOy中,抛物线y=mx22mx3(m0)与x轴交于A(3,0),B两点(1)求抛物线的表达式及点B的坐标;(2)当2x3时的函数图象记为G,求此时函数y的取值范围;(3)在(2)的条件下,将图象G在x轴上方的部分沿x轴翻折,图象G的其余部分保持不

9、变,得到一个新图象M若经过点C(4.2)的直线y=kx+b(k0)与图象M在第三象限内有两个公共点,结合图象求b的取值范围23(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分ABO交x轴于点C(2,0)点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分PDO交y轴于点F设点D的横坐标为t(1)如图1,当0t2时,求证:DFCB;(2)当t0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;(3)若点M的坐标为(4,-1),在点P运动的过程中,当MCE的面积等于BCO面积的倍时

10、,直接写出此时点E的坐标24(10分)如图,在平面直角坐标系中,点O为坐标原点,已知ABC三个定点坐标分别为A(4,1),B(3,3),C(1,2)画出ABC关于x轴对称的A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1( , ),B1( , ),C1( , );画出点C关于y轴的对称点C2,连接C1C2,CC2,C1C,并直接写出CC1C2的面积是 25(10分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型在献血者人群中,随机抽取了

11、部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型ABABO人数 105 (1)这次随机抽取的献血者人数为 人,m= ;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?26(12分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD(1)求证:EB=GD;(2)若AB=5,AG=2,求EB的长27(12分)甲、乙两名队员的10次射击训练,成绩分别被制成下列两个统计图.并整

12、理分析数据如下表:平均成绩/环中位数/环众数/环方差甲771.2乙78(1)求,的值;分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差2、A【解析】由数轴上

13、点的位置得:ba0|c|a|,a+c0,a2b0,c+2b0,则原式=a+ca+2b+c+2b=4b +2c.故选:B.点睛:本题考查了整式的加减以及数轴,涉及的知识有:去括号法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.3、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 4、B

14、【解析】如图,经过6次反弹后动点回到出发点(0,3),20186=3362,当点P第2018次碰到矩形的边时为第336个循环组的第2次反弹,点P的坐标为(7,4)故选C5、C【解析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数【详解】捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选C【点睛】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握6、A【解析】试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可解:ax24ax12a=a(x24x12)=a(x6

15、)(x+2)故答案为a(x6)(x+2)点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键7、B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化【详解】 -故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.8、B【解析】直接利用立方根的定义化简得出答案【详解】因为(-1)3=-1,=1故选:B【点睛】此题主要考查了立方根,正确把握立方根的定义是解题关键,9、B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以

16、)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确故选B10、C【解析】画树状图得:共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,两次抽取的卡片上的数字之积为正偶数的概率是:.故选C.【点睛】运用列表法或树状图法求概率注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件11、A【解析】解:四边形ABCO是平行四边形,且OA

17、=OC,四边形ABCO是菱形,AB=OA=OB,OAB是等边三角形,AOB=60,BD是O的直径,点B、D、O在同一直线上,ADB=AOB=30故选A12、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的

18、思想和分类讨论的数学思想解答二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】根据EBD由ABC旋转而成,得到ABCEBD,则BCBD,EBDABC30,则有BDCBCD,DBC1803010,化简计算即可得出.【详解】解:EBD由ABC旋转而成,ABCEBD,BCBD,EBDABC30,BDCBCD,DBC1803010,;故答案为:1【点睛】此题考查旋转的性质,即图形旋转后与原图形全等14、60【解析】根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决【详解】B=56,C=45,ADB=ADC=90,BC=BD+CD=100米, BD=,CD

19、=,+=100, 解得,AD60考点:解直角三角形的应用15、2【解析】试题解析:xay与3x2yb是同类项,a=2,b=1,则ab=2.16、yx2+2x(答案不唯一)【解析】设此二次函数的解析式为yax(x+2),令a1即可【详解】抛物线过点(0,0),(2,0),可设此二次函数的解析式为yax(x+2),把a1代入,得yx2+2x故答案为yx2+2x(答案不唯一)【点睛】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一17、25a2b1【解析】代数式内每项因式均平方即可.【详解】解:原式=25a2b1.【点睛】本题考查了代数式的乘方.18、【解析】过点C作CECF延长

20、BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.【详解】解:延长BA交CE于点E,设CFBF于点F,如图所示在RtBDF中,BFn,DBF30,在RtACE中,AEC90,ACE45,AECEBFn,故答案为:【点睛】此题考查解直角三角形的应用,解题的关键在于做辅助线.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1)20;(2)40,1;(3)【解析】试题分析:(1)根据等级为A的人数除以所占的百分比求出总人数;(2)根据D级的人数求得D等级扇形圆心角的度数和m的值;(3)列表得出所有等可能的情况数,找出一男一女的情况数,即可求

21、出所求的概率试题解析:解:(1)根据题意得:315%=20(人),故答案为20;(2)C级所占的百分比为100%=40%,表示“D等级”的扇形的圆心角为360=1;故答案为40、1(3)列表如下:所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生= =20、见解析【解析】试题分析:(1), ,可得 ,从而得,再根据BDF=CDA 即可证;(2)由 ,可得,从而可得,再由,可得从而得,继而可得 ,得到试题解析:(1), , ,又ADB=CDE ,ADB+ADF=CDE+ADF,即BDF=CDA ,;(2) , , , 【点睛】本题考查了相似三角形的性质

22、与判定,能结合图形以及已知条件灵活选择恰当的方法进行证明是关键.21、(1)y1=t(t30)(0t30);(2)y2=;(3)上市第20天,国内、外市场的日销售总量y最大,最大值为80万件【解析】(1)根据题意得出y1与t之间是二次函数关系,然后利用待定系数法求出函数解析式;(2)利用待定系数法分别求出两个函数解析式,从而得出答案;(3)分0t20、t=20和20t30三种情况根据y=y1+y2求出函数解析式,然后根据二次函数的性质得出最值,从而得出整体的最值【详解】解:(1)由图表数据观察可知y1与t之间是二次函数关系,设y1=a(t0)(t30) 再代入t=5,y1=25可得a=y1=t

23、(t30)(0t30)(2)由函数图象可知y2与t之间是分段的一次函数由图象可知:0t20时,y2=2t,当20t30时,y2=4t+120,y2=,(3)当0t20时,y=y1+y2=t(t30)+2t=80(t20)2 , 可知抛物线开口向下,t的取值范围在对称轴左侧,y随t的增大而增大,所以最大值小于当t=20时的值80,当20t30时,y=y1+y2=t(t30)4t+120=125(t5)2 , 可知抛物线开口向下,t的取值范围在对称轴右侧,y随t的增大而减小,所以最大值为当t=20时的值80,故上市第20天,国内、外市场的日销售总量y最大,最大值为80万件22、(1)抛物线的表达式

24、为y=x22x2,B点的坐标(1,0);(2)y的取值范围是3y1(2)b的取值范围是b【解析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)将A(2,0)代入,得m=1, 抛物线的表达式为y=-2x-2 令-2x-2=0,解得:x=2或x=-1, B点的坐标(-1,0) (2)y=-2x-2=-3当-2x1时,y随x增大而减小,当1x2时,y随x增大而增大,当x

25、=1,y最小=-3 又当x=-2,y=1, y的取值范围是-3y1(2)当直线y=kx+b经过B(-1,0)和点(3,2)时, 解析式为y=x+当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=x-2由函数图象可知;b的取值范围是:-2b【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.23、(1)详见解析;(2)详见解析

26、;(3)详见解析.【解析】(1)求出PBO+PDO=180,根据角平分线定义得出CBO=PBO,ODF=PDO,求出CBO+ODF=90,求出CBO=DFO,根据平行线的性质得出即可;(2)求出ABO=PDA,根据角平分线定义得出CBO=ABO,CDQ=PDO,求出CBO=CDQ,推出CDQ+DCQ=90,求出CQD=90,根据垂直定义得出即可;(3)分为两种情况:根据三角形面积公式求出即可【详解】(1)证明:如图1在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),AOB=90DPAB于点P,DPB=90,在四边形DPBO中,DPB+PBO+BOD+PDO=360,PBO

27、+PDO=180,BC平分ABO,DF平分PDO,CBO=PBO,ODF=PDO,CBO+ODF=(PBO+PDO)=90,在FDO中,OFD+ODF=90,CBO=DFO,DFCB(2)直线DF与CB的位置关系是:DFCB,证明:延长DF交CB于点Q,如图2,在ABO中,AOB=90,BAO+ABO=90,在APD中,APD=90,PAD+PDA=90,ABO=PDA,BC平分ABO,DF平分PDO,CBO=ABO,CDQ=PDO,CBO=CDQ,在CBO中,CBO+BCO=90,CDQ+DCQ=90,在QCD中,CQD=90,DFCB(3)解:过M作MNy轴于N,M(4,-1),MN=4,

28、ON=1,当E在y轴的正半轴上时,如图3,MCE的面积等于BCO面积的倍时,2OE+(2+4)1-4(1+OE)=24,解得:OE=,当E在y轴的负半轴上时,如图4,(2+4)1+(OE-1)4-2OE=24,解得:OE=,即E的坐标是(0,)或(0,-)【点睛】本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度24、(1)1、1,3、3,1、2;(2)见解析,1.【解析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)作出点C关于y轴的对称点,然后连接得到三角形,根据面积公式计算可得【详解】(1)如图所示,A1

29、B1C1即为所求A1(1,1)B1(3,3),C1(1,2)故答案为:1、1、3、3、1、2;(2)如图所示,CC1C2的面积是21=1故答案为:1【点睛】本题考查了作图轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质25、(1)50,20;(2)12,23;见图;(3)大约有720人是A型血【解析】【分析】(1)用AB型的人数除以它所占的百分比得到随机抽取的献血者的总人数,然后用B型的人数除以抽取的总人数即可求得m的值;(2)先计算出O型的人数,再计算出A型人数,从而可补全上表中的数据;(3)用样本中A型的人数除以50得到血型是A型的概率,然后用3000乘以此概率可估计这3000人中是A型血的人数【详解】(1)这次随机抽取的献血者人数为510%=50(人),所以m=100=20,故答案为50,20;(2)O型献血的人数为46%50=23(人),A型献血的人数为5010523=12

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论