云南省云南大附中(一二一校区)2022-2023学年数学九年级第一学期期末预测试题含解析_第1页
云南省云南大附中(一二一校区)2022-2023学年数学九年级第一学期期末预测试题含解析_第2页
云南省云南大附中(一二一校区)2022-2023学年数学九年级第一学期期末预测试题含解析_第3页
云南省云南大附中(一二一校区)2022-2023学年数学九年级第一学期期末预测试题含解析_第4页
云南省云南大附中(一二一校区)2022-2023学年数学九年级第一学期期末预测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在ABC中,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:PMPN;若ABC60,则PMN为等边三角形;若ABC45,则BNPC其中正确的是()ABCD2如图,O是ABC的外接圆,已知ACB60,则

2、ABO的大小为()A30B40C45D503不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A摸出的是3个白球B摸出的是3个黑球C摸出的是2个白球、1个黑球D摸出的是2个黑球、1个白球4如图,AB为O的弦,半径OC交AB于点D,ADDB,OC5,OD3,则AB的长为()A8B6C4D35顺次连接平行四边形四边的中点所得的四边形是( )A矩形B菱形C正方形D平行四边形6在平面直角坐标系中,二次函数的图象可能是( )ABCD7如图,电线杆的高度为,两根拉线与相互垂直,则拉线的长度为(、在同一条直线上)( )ABCD8若

3、x2是关于x的一元二次方程x22a0的一个根,则a的值为()A3B2C4D59如图,若,则的长是( )A4B6C8D1010若分式的值为,则的值为( )ABCD二、填空题(每小题3分,共24分)11若点与点关于原点对称,则_12一圆锥的母线长为5,底面半径为3,则该圆锥的侧面积为_.13已知方程的两实数根的平方和为,则k的值为_14设分别为一元二次方程的两个实数根,则_ 15已知实数,是方程的两根,则的值为_16如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点.此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为_m.17

4、如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则DMN的面积= 18如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是_km三、解答题(共66分)19(10分)为了测量山坡上的电线杆的高度,数学兴趣小组带上测角器和皮尺来到山脚下,他们在处测得信号塔顶端的仰角是,信号塔底端点的仰角为,沿水平地面向前走100米到处,测得信号塔顶端的仰角是,求信号塔的高度.(结果保留整数)20(6分)我市某中学艺术节期间,向全校学生征集书画作品九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进

5、行了分析统计,制作了如下两幅不完整的统计图(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率21(6分)关于x的一元二次方程(k+1)x23x3k20有一个根为1,求k的值及方程的另一个根22(8分)某商场以每件42元的价格购进一种服装,由试销知,每天的销量t(件)与每

6、件的销售价x(元)之间的函数关系为t=204-3x.(1)试写出每天销售这种服装的毛利润y(元)与每件售价x(元)之间的函数关系式(毛利润=销售价-进货价);(2)每件销售价为多少元,才能使每天的毛利润最大?最大毛利润是多少?23(8分)如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为(1)求的值;(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点当时,求线段的长;若,结合函数的图象,直接写出的取值范围24(8分)在平面直角坐标系中,直线分别与,轴交于,两点,点在线段上,抛物线经过,两点,且与轴交于另一点.(1)求点的坐标(用只含,的代数式表示);(2)当时,若

7、点,均在抛物线上,且,求实数的取值范围;(3)当时,函数有最小值,求的值.25(10分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是 ;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率(请用画树状图或列表等方法求解)26(10分)阅读下面材料,完成(1),(2)两题数学课上,老师出示了这样一道题:如图1,在中,点为上一点,且满足,为上一点,延长交于,求的值同学们经过思考后,交流了自己的想法:小明:“通过观察和度

8、量,发现与相等”小伟:“通过构造全等三角形,经过进一步推理,就可以求出的值”老师:“把原题条件中的,改为其他条件不变(如图2),也可以求出的值(1)在图1中,求证:;求出的值;(2)如图2,若,直接写出的值(用含的代数式表示)参考答案一、选择题(每小题3分,共30分)1、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断正确;先证明ABMACN,再根据相似三角形的对应边成比例可判断正确;如果PMN为等边三角形,求得MPN60,推出CPM是等边三角形,得到ABC是等边三角形,而ABC不一定是等边三角形,故错误;当ABC45时,BCN45,由P为BC边的中点,得出BNPBPC,判断正确【详解

9、】解:BMAC于点M,CNAB于点N,P为BC边的中点,PMBC,PNBC,PMPN,正确;在ABM与ACN中,AA,AMBANC90,ABMACN,正确;ABC60,BPN60,如果PMN为等边三角形,MPN60,CPM60,CPM是等边三角形,ACB60,则ABC是等边三角形,而ABC不一定是等边三角形,故错误;当ABC45时,CNAB于点N,BNC90,BCN45,BNCN,P为BC边的中点,PNBC,BPN为等腰直角三角形BNPBPC,故正确故选:B【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质2、A【分析】根据圆

10、周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得AOB120,再根据三角形内角和定理可得答案【详解】ACB60,AOB120,AOBO,ABO(180120)230,故选A【点睛】本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半3、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.4、A【分析】连接OB,根据O的半径为5,CD2得出OD的长,再由垂径定理的推论得出OCAB,由勾股定理求出BD的长,进而可得出结论【详解】解:连接OB,如图所

11、示:O的半径为5,OD3,ADDB,OCAB,ODB90,BDAB2BD1故选:A【点睛】本题主要考查的是圆中的垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”,掌握垂径定理是解此题的关键.5、D【解析】试题分析:顺次连接四边形四边的中点所得的四边形是平行四边形,如果原四边形的对角线互相垂直,那么所得的四边形是矩形,如果原四边形的对角线相等,那么所得的四边形是菱形,如果原四边形的对角线相等且互相垂直,那么所得的四边形是正方形,因为平行四边形的对角线不一定相等或互相垂直,因此得平行四边形.故选D.考点:中点四边形的形状判断.6、A【分析】根据二次函数图像的特点可得.【详解】解:二次函数与

12、轴有两个不同的交点,开口方向向上故选:A【点睛】本题考查了二次函数的图象,解决本题的关键是二次函数的开口方向和与x轴的交点7、B【分析】先通过等量代换得出,然后利用余弦的定义即可得出结论【详解】 故选:B【点睛】本题主要考查解直角三角形,掌握余弦的定义是解题的关键8、A【分析】把x2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值【详解】x2是关于x的一元二次方程x22a0的一个根,222a0,解得 a1即a的值是1故选:A【点睛】本题考查了一元二次方程的解的定义能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元

13、二次方程的解也称为一元二次方程的根9、C【解析】根据相似三角形对应边成比例即可求解【详解】EFOGHOEF=2GH=8故选:C【点睛】本题考查了相似三角形的性质,找到对应边建立比例式是解题的关键10、A【分析】分式值为零的条件是分子等于零且分母不等于零,据此求解即可【详解】解:分式的值为1,x-2=1且x+41解得:x=2故选:A【点睛】本题主要考查的是分式值为零的条件,熟练掌握分式值为零的条件是解题的关键二、填空题(每小题3分,共24分)11、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为112、15【分析】利用圆

14、锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算【详解】圆锥的侧面积=235=15故答案是:15【点睛】考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长13、3【分析】根据一元二次方程根与系数的关系,得出和的值,然后将平方和变形为和的形式,代入便可求得k的值【详解】,设方程的两个解为则,两实根的平方和为,即=解得:k=3或k=11当k=11时,一元二次方程的0,不符,需要舍去故答案为:3【点睛】本题考查根与系数的关系,注意在最后求解出2个值后,有一个值不符需要舍去14、1【分析】先根

15、据m是的一个实数根得出 ,利用一元二次方程根与系数的关系得出 ,然后对原式进行变形后整体代入即可得出答案【详解】m是一元二次方程的一个实数根,即由一元二次方程根与系数的关系得出,故答案为:1【点睛】本题主要考查一元二次方程的根及根与系数的关系,掌握一元二次方程根与系数的关系是解题的关键15、-1【解析】先根据根与系数的关系得到a+b=1,ab=1,再利用通分把+变形为,然后利用整体代入的方法计算【详解】根据题意得:a+b=1,ab=1,所以+=1故答案为:1【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握根与系数关系的公式是关键16、7【解析】设树的高度为m,由相似可得,解得,所以树的

16、高度为7m17、1【分析】首先连接DF,由四边形ABCD是正方形,可得BFNDAN,又由E,F分别是AB,BC的中点,可得=2,ADEBAF(SAS),然后根据相似三角形的性质与勾股定理,可求得AN,MN的长,即可得MN:AF的值,再利用同高三角形的面积关系,求得DMN的面积【详解】连接DF,四边形ABCD是正方形,ADBC,AD=BC=,BFNDAN,F是BC的中点,AN=2NF,在RtABF中,E,F分别是AB,BC的中点,AD=AB=BC,DAE=ABF=90,在ADE与BAF中,ADEBAF(SAS),AED=AFB,AME=110-BAF-AED=110-BAF-AFB=90,又,故

17、答案为:118、58【解析】设A、B两地的实际距离是x厘米,根据比例尺的性质列出方程,求出x的值,再进行换算即可得出答案【详解】设A.B两地的实际距离是x厘米,比例尺为1:1000000,A.B两地的图上距离是5.8厘米,1:1000000=5.8:x,解得:x=5800000,5800000厘米=58千米,A、B两地的实际距离是58千米.故答案为58.【点睛】考查图上距离,实际距离,和比例尺之间的关系,注意单位之间的转换.三、解答题(共66分)19、信号塔的高度约为100米.【分析】延长PQ交直线AB于点M,连接AQ,设PM的长为x米,先由三角函数得出方程求出PM,再由三角函数求出QM,得出

18、PQ的长度即可【详解】解:延长交直线于点,连接,如图所示: 则,设的长为米,在中,米,(米),在中,解得:,在中,(米),(米);答:信号塔的高度约为100米.【点睛】本题考查解直角三角形的应用、三角函数;由三角函数得出方程是解决问题的关键,注意掌握当两个直角三角形有公共边时,先求出这条公共边的长是解答此类题的一般思路20、(1)抽样调查;12;3;(2)60;(3)【解析】试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班

19、级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解试题解析:(1)抽样调查,所调查的4个班征集到作品数为:5=12件,B作品的件数为:12252=3件,故答案为抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=124=3(件),所以,估计全年级征集到参展作品:314=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)=,即恰好抽中一男一女的概率是考点:1条形统计图;2用样本估计总体;3扇形统计图;4列表法与树状图法;5图表型21、k1,x【分析】将x1代入原方程可

20、求出k值的值,然后根据根与系数的关系即可求出另外一根【详解】将x1代入(k+1)x23x3k20,k1,该方程为2x23x50,设另外一根为x,由根与系数的关系可知:x,x【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解题的关键.22、(1)y= -3x2+330 x-8568;(2)每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【分析】(1)根据毛利润销售价进货价可得y关于x的函数解析式;(2)将(1)中函数关系式配方可得最值情况【详解】(1)根据题意,y=(x-42)(204-3x)= -3x2+330 x-8568;(2)y=-3x2+330 x-856

21、8= -3(x-55)2+507因为-30,所以x=55时,y有最大值为507. 答:每件销售价为55元时,能使每天毛利润最大,最大毛利润为507元.【点睛】本题主要考查二次函数的应用,理解题意根据相等关系列出函数关系式,并熟练掌握二次函数的性质是解题的关键23、(1);(2);或【分析】(1)先把点A代入一次函数得到a的值,再把点A代入反比例函数,即可求出k;(2)根据题意,先求出m的值,然后求出点C、D的坐标,即可求出CD的长度;根据题意,当PC=PD时,点C、D恰好与点A、B重合,然后求出点B的坐标,结合函数图像,即可得到m的取值范围.【详解】解:(1)把代入,得,点A为(1,3),把代

22、入,得;(2)当时,点P为(2,0),如图:把代入直线,得:,点C坐标为(2,4),把代入,得:,;根据题意,当PC=PD时,点C、D恰好与点A、B重合,如图,解得:或(即点A),点B的坐标为(),由图像可知,当时,有点P在的左边,或点P在的右边取到,或.【点睛】本题考查了反比例函数的图像和性质,一次函数的图像和性质,解题的关键是掌握反比例函数与一次函数的联系,熟练利用数形结合的思想进行解题.24、(1);(2),;(3)或.【分析】(1)在一次函数中求点A,B的坐标,然后将点C,A坐标代入二次函数解析式,求得,令y=0,解方程求点D的坐标;(2)由C点坐标确定m的取值范围,结合抛物线的对称性,结合函数增减性分析n的取值范围;(3)利用顶点纵坐标公式求得函数最小值,然后分情况讨论:当点在点的右侧时或做测时,分别求解.【详解】解:(1)直线分别与,轴交于,两点,.抛物线过点和点,.令,得.解得,.(2)点在线段上,.,.抛物线的对称轴是直线.在抛物线上取点,使点与点关于直线对称.由得.点在抛物线上,且,由函数增减性,得,.(3)函数有最小值,.当点在点的右侧时,得,解得.,解得,.当点在点的左侧时,得,解得.解得:,.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论