版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1中,若,则的长为( )ABCD52已知一个扇形的弧长为3,所含的圆心角为120,则半径为()A9B3CD3如图,在ABC中,点D是AB边上的一点,若ACD
2、=B,AD=1,AC=2,ADC的面积为1,则BCD的面积为( )A1B2C3D44如图,小明利用测角仪和旗杆的拉绳测量学校旗杆的高度如图,旗杆PA的高度与拉绳PB的长度相等小明将PB拉到PB的位置,测得PBC(BC为水平线),测角仪BD的高度为1m,则旗杆PA的高度为( )AmBmC mD m5已知函数yax2+bx+c(a1)的图象如图,给出下列4个结论:abc1; b24ac; 4a+2b+c1;2a+b1其中正确的有()个A1B2C3D46下列事件中,是必然事件的是()A掷一枚质地均匀的骰子,向上一面的点数为偶数B三角形的内角和等于180C不透明袋子中装有除色外无其它差别的9个白球,1
3、个黑球,从中摸出一球为白球D抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”7如图,在ABC中,DEBC,若,则的值为()ABCD8如图,在ABC中,BMAC于点M,CNAB于点N,P为BC边的中点,连接PM、PN、MN,则下列结论:PMPN;若ABC60,则PMN为等边三角形;若ABC45,则BNPC其中正确的是()ABCD9先将抛物线关于轴作轴对称变换,所得的新抛物线的解析式为( )ABCD10如图,A是O的圆周角,A40,则OBC()A30B40C50D60二、填空题(每小题3分,共24分)11已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为_.1
4、2已知点P是正方形ABCD内部一点,且PAB是正三角形,则CPD_度13如图,已知的半径为2,内接于,则_14如图,现有测试距离为5m的一张视力表,表上一个E的高AB为2cm,要制作测试距离为3m的视力表,其对应位置的E的高CD为_cm15如图,某数学兴趣小组将边长为4的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB的面积为_ 16一元二次方程2x23x10的两个根之和为_17如图,在ABC中,AC:BC:AB3:4:5,O沿着ABC的内部边缘滚动一圈,若O的半径为1,且圆心O运动的路径长为18,则ABC的周长为_18关于的方程的一个根为2,则_
5、.三、解答题(共66分)19(10分)计算:(1)(2)20(6分)如图,已知直线y=x+3与x轴、y轴分别交于点A、B,抛物线y=-x2+bx+c经过A、B两点,与x轴交于另一个点C,对称轴与直线AB交于点E,抛物线顶点为D (1)求抛物线的解析式和顶点坐标;(2)在第三象限内的抛物线上是否存在一点F,使A、E、C、F为顶点的四边形面积为6?若存在,直接写出点F的坐标;若不存在,说明理由21(6分)如图,菱形ABCD的边AB20,面积为320,BAD90,O与边AB,AD都相切,若AO=10,则O的半径长为_.22(8分)如图,四边形ABCD内接于O,AB是直径,C为的中点,延长AD,BC交
6、于点P,连结AC(1)求证:ABAP;(2)若AB10,DP2,求线段CP的长;过点D作DEAB于点E,交AC于点F,求ADF的面积23(8分)如图,四边形是平行四边形,分别是的平分线,且与对角线分别相交于点.(1)求证:;(2)连结,判断四边形是否是平行四边形,说明理由.24(8分)如图,是的直径,是的切线,点为切点,与交于点,点是的中点,连结(1)求证:是的切线;(2)若,求阴影部分的面积25(10分)化简(1)(2)26(10分)如图,BD、CE是的高(1)求证:;(2)若BD8,AD6,DE5,求BC的长参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意,可得= ,又由A
7、B=4,代入即可得AC的值.【详解】解:中,=.AC=AB= .故选B.【点睛】本题考查解直角三角形、勾股定理,解答本题的关键是明确题意,利用锐角三角函数和勾股定理解答2、C【分析】根据弧长的公式进行计算即可【详解】解:设半径为r,扇形的弧长为3,所含的圆心角为120,3,r,故选:C【点睛】此题考查的是根据弧长和圆心角求半径,掌握弧长公式是解决此题的关键3、C【详解】ACD=B,A=A,ACDABC,SABC=4,SBCD= SABC- SACD=4-1=1故选C考点:相似三角形的判定与性质.4、A【解析】设PA=PB=PB=x,在RTPCB中,根据sin=,列出方程即可解决问题【详解】设P
8、A=PB=PB=x,在RTPCB中,sin=,=sin,x-1=xsin,(1-sin)x=1,x=故选A【点睛】本题考查解直角三角形、三角函数等知识,解题的关键是设未知数列方程,属于中考常考题型5、C【分析】二次函数yax2bxc系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点来确定,结合抛物线与x轴交点的个数来分析解答【详解】解:由抛物线的对称轴可知:1,ab1,由抛物线与y轴的交点可知:c1,abc1,故错误;由图象可知:1,b24ac1,即b24ac,故正确;(1,c)关于直线x1的对称点为(2,c),而x1时,yc1,x2时,yc1,y4a2bc1,故正确;,b2a,2ab1,故
9、正确故选C【点睛】本题考查了二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,属于中等题型6、B【分析】根据事件发生的可能性大小判断相应事件的类型【详解】解:A、掷一枚质地均匀的骰子,向上一面的点数为偶数是随机事件;B、三角形的内角和等于180是必然事件;C、不透明袋子中装有除色外无其它差别的9个白球,1个黑球,从中摸出一球为白球是随机事件;D、抛掷一枚质地均匀的硬币2次,出现1次“正面向上”,1次“反面向上”是随机事件;故选:B【点睛】本题考查了必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事
10、件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、A【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案【详解】解:,DEBC,故选:A【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键8、B【分析】根据直角三角形斜边上的中线等于斜边的一半可判断正确;先证明ABMACN,再根据相似三角形的对应边成比例可判断正确;如果PMN为等边三角形,求得MPN60,推出CPM是等边三角形,得到ABC是等边三角形,而ABC不一定是等边三角形,故错误;当ABC45时,BCN45,由P为BC边的中点,得出BNPBPC,判断正确【详解】解:BMAC于点M,CNAB
11、于点N,P为BC边的中点,PMBC,PNBC,PMPN,正确;在ABM与ACN中,AA,AMBANC90,ABMACN,正确;ABC60,BPN60,如果PMN为等边三角形,MPN60,CPM60,CPM是等边三角形,ACB60,则ABC是等边三角形,而ABC不一定是等边三角形,故错误;当ABC45时,CNAB于点N,BNC90,BCN45,BNCN,P为BC边的中点,PNBC,BPN为等腰直角三角形BNPBPC,故正确故选:B【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质、等腰三角形的判定与性质及相似三角形的性质9、C【分析】根据平面直角坐标系中,二次函数关于轴
12、对称的特点得出答案【详解】根据二次函数关于轴对称的特点:两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,可得:抛物线关于轴对称的新抛物线的解析式为故选:C.【点睛】本题主要考查二次函数关于轴对称的特点,熟知两抛物线关于轴对称,二次项系数,一次项系数,常数项均互为相反数,对称轴不变是关键.10、C【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半求得BOC,再根据三角形的内角和定理以及等腰三角形的两个底角相等进行计算【详解】解:根据圆周角定理,得BOC2A80OBOCOBCOCB50,故选:C【点睛】本题考查了圆周角定理,等腰三角形的性质,三角形内角和定理,掌握圆周角定理是解
13、题的关键二、填空题(每小题3分,共24分)11、-10【解析】根据根与系数的关系得出-2+4=-m,-24=n,求出即可【详解】关于x的一元二次方程的两个实数根分别为x =-2,x =4,2+4=m,24=n,解得:m=2,n=8,m+n=10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键12、1【解析】如图,先求出DAPCBP30,由APADBPBC,就可以求出PDCPCD15,进而得出CPD的度数【详解】解:如图,四边形ABCD是正方形,ADABBC,DABABC90,ABP是等边三角形,APBPAB,PABPBA60,APADBPBC,DAPCBP30BCPBP
14、CAPDADP75,PDCPCD15,CPD180PDCPCD18015151故答案为1【点睛】本题考查了正方形的性质的运用,等边三角形的性质的运用,等腰三角形的性质的运用,解答时运用三角形内角和定理是关键13、【解析】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得AOB的度数,然后根据勾股定理即可求得AB的长详解:连接AD、AE、OA、OB,O的半径为2,ABC内接于O,ACB=135,ADB=45,AOB=90,OA=OB=2,AB=2,故答案为:2点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答14、1
15、.1【分析】证明OCDOAB,然后利用相似比计算出CD即可【详解】解:OB=5m,OD=3m,AB=1cm,CDAB,OCDOAB,即,CD=1.1,即对应位置的E的高CD为1.1cm故答案为1.1【点睛】本题考查了相似三角形的应用:常常构造“A”型或“X”型相似图,利用三角形相似的性质求相应线段的长15、【详解】设扇形的圆心角为n,则根据扇形的弧长公式有: ,解得 所以16、【解析】试题解析:由韦达定理可得:故答案为:点睛:一元二次方程根与系数的关系:17、4【分析】如图,首先利用勾股定理判定ABC是直角三角形,由题意得圆心O所能达到的区域是DEG,且与ABC三边相切,设切点分别为G、H、P
16、、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBM,DG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,继而则有矩形DEPG、矩形EQNF、矩形DFMH,从而可知DEGP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90,根据题意可知四边形CPEQ是边长为1的正方形,根据相似三角形的判定可得DEFACB,根据相似三角形的性质可知:DEEFFDACCBBA341,进而根据圆心O运动的路径长列出方程,求解算出DE、EF、FD的长,根据矩形的性质可得:GP、QN、MH的长,根据切线长定理可设:AGAHx,BNBM
17、y,根据线段的和差表示出AC、BC、AB的长,进而根据ACCBBA341列出比例式,继而求出x、y的值,进而即可求解ABC的周长【详解】ACCBBA341,设AC3a,CB4a,BA1a(a0)ABC是直角三角形,设O沿着ABC的内部边缘滚动一圈,如图所示,连接DE、EF、DF,设切点分别为G、H、P、Q、M、N,连接DH、DG、EP、EQ、FM、FN,根据切线性质可得:AGAH,PCCQ,BNBMDG、EP分别垂直于AC,EQ、FN分别垂直于BC,FM、DH分别垂直于AB,DGEP,EQFN,FMDH,O的半径为1DGDHPEQEFNFM1,则有矩形DEPG、矩形EQNF、矩形DFMH,DE
18、GP,EFQN,DFHM,DEGP,DFHM,EFQN,PEF90又CPECQE90, PEQE1四边形CPEQ是正方形,PCPEEQCQ1,O的半径为1,且圆心O运动的路径长为18,DE+EF+DF18,DEAC,DFAB,EFBC,DEFACB,DFEABC,DEFABC,DE:EF:DFAC:BC:AB3:4:1,设DE3k(k0),则EF4k,DF1k,DE+EF+DF18,3k+4k+1k18,解得k, DE3k,EF4k6,DF1k,根据切线长定理,设AGAHx,BNBMy,则ACAG+GP+CPx+1x+11,BCCQ+QN+BN1+6+yy+2,ABAH+HM+BMx+yx+y
19、+21,AC:BC:AB3:4:1,(x+11):(y+2):(x+y+21)3:4:1,解得x2,y3,AC21,BC10,AB31,AC+BC+AB4所以ABC的周长为4故答案为4【点睛】本题是一道动图形问题,考查切线的性质定理、相似三角形的判定与性质、矩形的判定与性质、解直角三角形等知识点,解题的关键是确定圆心O的轨迹,学会作辅助线构造相似三角形,综合运用上述知识点18、1【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值【详解】把x2代入方程得:4k220,解得k1故答案为:1【点睛】本题主要考查了方程的根的定义,是一个
20、基础的题目三、解答题(共66分)19、(1);(2)【分析】(1)分别根据二次根式的性质、0指数幂的意义和负整数指数幂的运算法则计算各项,再合并即可;(2)根据分式的乘方和分式的乘除混合运算法则解答即可【详解】解:(1)原式=;(2)原式【点睛】本题考查了二次根式的性质、0指数幂、负整数指数幂以及分式的乘方和分式的乘除混合运算等知识,属于基础题目,熟练掌握上述知识是解题的关键20、(1)抛物线的解析式为y=-x2-2x+3,顶点坐标(-1,4);(2)存在点F(-1-,-1)【分析】(1)要求抛物线y=-x2+bx+c的解析式,由于b与c待定,为此要找抛物线上两点坐标,抛物线y=-x2+bx+
21、c经过A、B两点,且直线y=x+3与x轴、y轴分别交于点A、B,让x=0,求y值,让 y=0,求x的值A、B两点坐标代入解析式,利用配方变顶点式即可,(2)使A、E、C、F为顶点的四边形面积为1,AC把四边形分为两个三角形,ACE,ACF,由抛物线y=-x2-2x+3与x轴交点A、C两点,y=0,可求A、C两点坐标,则AC长可求,点E在直线y=x+3上,由在对称轴上,可求,设第三象限抛物线上的点纵坐标为-m,S四边形AECF=,可求F点的纵坐标-m,把y=-m代入抛物线解析式,求出x即可【详解】(1)已知直线y=x+3与x轴、y轴分别交于点A、B,当x=0时,y=3,B(0,3),当y=0时,
22、x+3=0,x=-3,A(-3,0),抛物线y=-x2+bx+c经过A、B两点,A、B两点坐标代入解析式,解得,抛物线y=-x2-2x+3,抛物线y=-x2-2x+3=-(x+1)2+4,抛物线顶点坐标(-1,4),(2)使A、E、C、F为顶点的四边形面积为1,抛物线y=-x2-2x+3与x轴交点A、C两点,y=0,-x2-2x+3=0,解得x=1或x=-3,A(-3,0),C(1,0),点E在直线y=x+3上,当x=-1时,y=-1+3=2,设第三象限抛物线上的点纵坐标为-m,S四边形AECF= S四边形AECF=,AC=4,2+m=3,m=1,当y=-1时,-1=-x2-2x+3,x=-1
23、,由x0,x=-1-,点F(-1-,-1),故存在第三象限内的抛物线上点F(-1-,-1),使A、E、C、F为顶点的四边形面积为1【点睛】本题考查抛物线解析式,顶点以及四边形面积问题,确定抛物线上两点确保,会利用一次函数求两轴交点坐标,会利用配方法把抛物线解析式变为顶点式,会利用AC把四边形分成两个三角形求面积来解决问题21、2 【解析】分析:如图作DHAB于H,连接BD,延长AO交BD于E利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由AOFDBH,可得,再将OA、BD、BH的长度代入即可求得OF的长度详解:如图所示:作DHAB于H,连接BD,延长AO交BD于E菱形ABCD的边A
24、B=20,面积为320,ABDH=320,DH=16,在RtADH中,AH= HB=AB-AH=8,在RtBDH中,BD=,设O与AB相切于F,连接OFAD=AB,OA平分DAB,AEBD,OAF+ABE=90,ABE+BDH=90,OAF=BDH,AFO=DHB=90,AOFDBH,即OF2.故答案是:2.点睛:考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题22、(1)见解析;(2)PC;SADF【分析】(1)利用等角对等边证明即可;(2)利用勾股定理分别求出BD,PB,再利用等腰三角形的性质即可解决问题;作FHAD
25、于H,首先利用相似三角形的性质求出AE,DE,再证明AE=AH,设FH=EF=x,利用勾股定理构建方程解决问题即可.【详解】(1)证明:,BACCAP,AB是直径,ACBACP90,ABC+BAC90,P+CAP90,ABCP,ABAP(2)解:连接BDAB是直径,ADBBDP90,ABAP10,DP2,AD1028,BD6,PB2,ABAP,ACBP,BCPCPB,PC解:作FHAD于HDEAB,AEDADB90,DAEBAD,ADEABD,AE,DE,FEAFEH,FEAE,FHAH,FHFE,AEFAHF90,AFAF,RtAFERtAFH(HL),AHAE,DHADAH,设FHEFx,在RtFHD中,则有(x)2x2+()2,解得x,SADFADFH8故答案为PC;SADF【点睛】本题考查了圆周角定理,等腰三角形的判定与性质,解直角三角形,相似三角形的判定与性质等知识. 属于圆的综合题,解题的关键是学会添加常用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人租房合同下载可打印(2024版)
- 天津事业单位2025年度聘用合同解除原因及处理办法3篇
- 2025餐饮业食品添加剂使用规范管理合同2篇
- 二零二五年度大学教授学术讲座与报告会合同3篇
- 2025年度出租车公司司机权益保障劳动合同范本4篇
- 2025年度个人私有土地买卖合同协议书范本4篇
- 二零二五年度住宅小区车位租赁与转租管理服务协议4篇
- 二零二四年度员工出差交通及通讯费用报销协议3篇
- 二零二五年度马铃薯种薯知识产权保护与授权合同4篇
- 二零二五版煤矿地质勘探劳务分包服务协议4篇
- 机电安装工程安全培训
- 洗浴部前台收银员岗位职责
- 2024年辅警考试公基常识300题(附解析)
- GB/T 43650-2024野生动物及其制品DNA物种鉴定技术规程
- 暴发性心肌炎查房
- 工程质保金返还审批单
- 【可行性报告】2023年电动自行车项目可行性研究分析报告
- 五月天歌词全集
- 商品退换货申请表模板
- 实习单位鉴定表(模板)
- 数字媒体应用技术专业调研方案
评论
0/150
提交评论