版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1已知正方形的边长为4cm,则其对角线长是()A8cmB16cmC32cmDcm2不论取何值时,抛物线与轴的交点有( )A0个B1个C2个D3个3下列事件中,属于必然事件的是()A任意购买一张电影票,座位号是奇数B明天晚上会看到太阳C五
2、个人分成四组,这四组中有一组必有2人D三天内一定会下雨4如图,是的外接圆,是直径若,则等于( )ABCD5已知x1,x2是关于x的方程x2ax2b0的两个实数根,且x1x22,x1x21,则ba的值是( )A14B14C4D16如果(m+2)x|m|+mx10是关于x的一元二次方程,那么m的值为()A2或2B2C2D07下列事件中,是必然事件的是()A任意买一张电影票,座位号是2的倍数B13个人中至少有两个人生肖相同C车辆随机到达一个路口,遇到红灯D明天一定会下雨8如图,已知双曲线上有一点,过作垂直轴于点,连接,则的面积为( )ABCD9若关于x的一元二次方程kx24x+3=0有实数根,则k的
3、非负整数值是()A1B0,1C1,2D1,2,310圆的面积公式SR2中,S与R之间的关系是()AS是R的正比例函数BS是R的一次函数CS是R的二次函数D以上答案都不对11在一个不透明的塑料袋中装有红色、白色球共40个,除颜色外其它都相同,小明通过多次摸球试验后发现,其中摸到红色球的频率稳定在15%左右,则口袋中红色球可能 ( )A4个B6个C34个D36个12一元二次方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C有一个实数根D无实数根二、填空题(每题4分,共24分)13如图,斜坡长为100米,坡角,现因“改小坡度”工程的需要,将斜坡改造成坡度的斜坡(、三点在地面的同一条垂
4、线上),那么由点到点下降了_米(结果保留根号)14双曲线 在每个象限内,函数值y随x的增大而增大,则m的取值范围是_15已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为_.16如图,将RtABC(其中B30,C90)绕点A按顺时针方向旋转到AB1C1的位置,使得点B、A、B1在同一条直线上,那么旋转角等于_17抛物线y=3(x2)2+5的顶点坐标是_18已知点A关于原点的对称点坐标为(1,2),则点A关于x轴的对称点的坐标为_三、解答题(共78分)19(8分)如图,O与ABC的AC边相切于点C,与BC边交于点E,O过AB上一点D,且DEAO,CE是O的直径(1)求证:AB
5、是O的切线;(2)若BD4,EC6,求AC的长20(8分)如图,一次函数y2x+8与反比例函数(x0)的图象交于A(m,6),B(3,n)两点,与x轴交于D点(1)求反比例函数的解析式(2)在第一象限内,根据图象直接写出一次函数值大于反比例函数值时自变量x的取值范围21(8分)某校组织了一次七年级科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品,C班提供的参赛作品的获奖率为50%,其他几个班的参赛作品情况及获奖情况绘制在下列图和图两幅尚不完整的统计图中.(1)B班参赛作品有多少件?(2)请你将图的统计图补充完整;(3)通过计算说明,哪个班的获奖率高?22(10分)如图,在中,动点
6、从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.(1)用含的代数式表示线段的长.(2)当点与点重合时,求的值.(3)设与重叠部分图形的面积为,求与之间的函数关系式.23(10分)如图所示的是夹文件用的铁(塑料)夹子在常态下的侧面示意图AC,BC表示铁夹的两个面,O点是轴,ODAC于点D,且AD15mm,DC24mm,OD10mm已知文件夹是轴对称图形,试利用图,求图中A,B两点间的距离24(10分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B(1)求二次函
7、数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标25(12分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC5,点E在射线BC上,tanDCE,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQBD交射线BC于点O,以BP、BQ为邻边构造PBQF,设点P的运动时间为t(t0)(1)
8、tanDBE ;(2)求点F落在CD上时t的值;(3)求PBQF与BCD重叠部分面积S与t之间的函数关系式;(4)连接PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与ABC的边平行(不重合)或垂直时,直接写出t的值26如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1(1)当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由参考答案一、选择题(每题4
9、分,共48分)1、D【分析】作一个边长为4cm的正方形,连接对角线,构成一个直角三角形如下图所示:由勾股定理得AC2=AB2+BC2,求出AC的值即可【详解】解:如图所示:四边形ABCD是边长为4cm的正方形,在RtABC中,由勾股定理得:AC=4cm所以对角线的长:AC=4cm故选D2、C【分析】首先根据题意与轴的交点即,然后利用根的判别式判定即可.【详解】由题意,得与轴的交点,即不论取何值时,抛物线与轴的交点有两个故选C.【点睛】此题主要考查根据根的判别式判定抛物线与坐标轴的交点,熟练掌握,即可解题.3、C【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】A、任意购买一张电影票
10、,座位号是奇数是随机事件;B、明天晚上会看到太阳是不可能事件;C、五个人分成四组,这四组中有一组必有2人是必然事件;D、三天内一定会下雨是随机事件;故选:C【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、C【解析】根据同弧所对的圆周角等于圆心角的一半可得:A=BOC=40【详解】BOC=80,A=BOC=40故选C【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半5、A【解析】根据
11、根与系数的关系和已知x1+x2和x1x2的值,可求a、b的值,再代入求值即可【详解】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x2=2b=1,解得a=2,b=-12,ba=(-12)2=14故选A6、B【分析】根据一元二次方程的定义可得:|m|=1,且m+10,再解即可【详解】解:由题意得:|m|=1,且m+10,解得:m=1故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”7、B【解析】必然事件就是一定发生的事件,结合不可能事件、随机事件的定义依据必然事件的定义逐项进行判断即可【详解】A、“任
12、意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误,故选B【点睛】本题考查了随机事件解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件8、B【分析】根据已知双曲线上有一点,点纵和横坐标的积是4,的面积是它的二分之一,即为所求.【详解】解:双曲线上有一点,设A的坐标为
13、(a,b),b=ab=4的面积=2故选:B.【点睛】本题考查了反比例函数的性质和三角形的面积,熟练掌握相关知识是解题的关键.9、A【详解】由题意得,根的判别式为=(-4)2-43k,由方程有实数根,得(-4)2-43k0,解得k,由于一元二次方程的二次项系数不为零,所以k0,所以k的取值范围为k且k0,即k的非负整数值为1,故选A10、C【解析】根据二次函数的定义,易得S是R的二次函数,故选C.11、B【解析】试题解析:摸到红色球的频率稳定在15%左右,口袋中红色球的频率为15%,故红球的个数为4015%=6个.故选B.点睛:由频数=数据总数频率计算即可12、B【分析】把一元二次方程转换成一般
14、式:(),再根据求根公式:,将相应的数字代入计算即可【详解】解:由题得:一元二次方程有两个相等的实数根故选:B【点睛】本题主要考查的是一元二次方程的一般式和求根公式,掌握一般式和求根公式是解题的关键二、填空题(每题4分,共24分)13、【分析】根据直角三角形的性质求出AC,根据余弦的定义求出BC,根据坡度的概念求出CD,结合图形计算,得到答案【详解】在RtABC中,ABC=30,AC=AB=50,BC=ABcosABC=50,斜坡BD的坡度i=1:5,DC:BC=1:5,DC=10,则AD=50-10,故答案为:50-10【点睛】此题考查解直角三角形的应用-坡度坡角问题,掌握坡度是坡面的铅直高
15、度h和水平宽度l的比是解题的关键14、【分析】根据反比例函数的性质可知 ,y随x的增大而增大则k知小于0,即m-20,解得m的范围即可.【详解】反比例函数y随x的增大而增大m-20则m2【点睛】本题考查了反比例函数的性质,函数值y随x的增大而增大则k小于0,函数值y随x的增大而减小则k大于0.15、-10【解析】根据根与系数的关系得出-2+4=-m,-24=n,求出即可【详解】关于x的一元二次方程的两个实数根分别为x =-2,x =4,2+4=m,24=n,解得:m=2,n=8,m+n=10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键16、180【分析】根据旋转的性
16、质可直接判定BAB1等于旋转角,由于点B、A、B1在同一条直线上,可知旋转角为180【详解】解:由旋转的性质定义知,BAB1等于旋转角,点B、A、B1在同一条直线上,BAB1为平角,BAB1180,故答案为:180【点睛】此题考查是旋转的性质,熟知图形旋转后所得图形与原图形全等是解答此题的关键17、(2,5)【解析】试题分析:由于抛物线y=a(xh)2+k的顶点坐标为(h,k),由此即可求解解:抛物线y=3(x2)2+5,顶点坐标为:(2,5)故答案为(2,5)考点:二次函数的性质18、 (1,2)【分析】利用平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,求出点A的坐标,再利用平面内
17、两点关于x轴对称时:横坐标不变,纵坐标互为相反数,求出A点关于x轴的对称点的坐标【详解】解:点A关于原点的对称点的坐标是(-1,2),点A的坐标是(1,-2),点A关于x轴的对称点的坐标是(1,2),故答案为:(1,2)【点睛】本题考查的知识点是关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数三、解答题(共78分)19、(1)见解析;(2)AC1【分析】(1)要证AB切线,连接半径OD,证ADO
18、90即可,由ACB90,由ODOE,DEOA,可得AODAOC,证AODAOC(SAS)即可,(2)AB是O的切线,BDO90,由勾股定理求BE,BCBE+EC可求,利用AD,AC是O的切线长,设ADACx,在RtABC中,AB2AC2+BC2构造方程求AC即可【详解】(1)证明:连接OD,ODOE,OEDODE,DEOA,ODEAOD,DEOAOC,AODAOC,AC是切线,ACB90,在AOD和AOC中,AODAOC(SAS),ADOACB90,OD是半径,AB是O的切线;(2)解:AB是O的切线,BDO90,BD2+OD2OB2,42+32(3+BE)2,BE2,BCBE+EC8,AD,
19、AC是O的切线,ADAC,设ADACx,在RtABC中,AB2AC2+BC2,(4+x)2x2+82,解得:x1,AC1【点睛】本题考查AB切线与切线长问题,掌握连接半径OD,证ADO90是证切线常用方法,利用AODAOC(SAS)来实现目标,先在RtBOD,用勾股定理求BE,再利用AD,AC是O的切线长,在RtABC中,用勾股定理构造方程求AC是解题关键20、(1) (x0);(2) 1x1【分析】(1)把A(m,6),B(1,n)两点分别代入y2x+8可求出m、n的值,确定A点坐标为(1,6),B点坐标为(1,2),然后利用待定系数法求反比例函数的解析式;(2)观察函数图象得到当1x1,一
20、次函数的图象在反比例函数图象上方【详解】(1)把A(m,6),B(1,n)两点分别代入y2x+8得62m+8,n21+8,解得m1,n2,A点坐标为(1,6),B点坐标为(1,2),把A(1,6)代入y (x0)求得k166,反比例函数解析式为 (x0);(2)在第一象限内,一次函数值大于反比例函数值时自变量x的取值范围是1x1【点睛】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数的解析式也考查了待定系数法求函数的解析式以及观察图象的能力21、(1)B班参赛作品有25件;(2)补图见解析;(3)C班的获奖率高.【分析】(1)直接利用扇形统计图中百分数,求
21、出B班所占的百分比,进而求出B班参赛作品数;(2)利用C班提供的参赛作品的获奖率为50%,结合C班参赛数量得出获奖数量,从而补全统计图;(3)分别求出各班的获奖率,进行比较从而得出答案.【详解】解:(1)B班参赛作品有;(2)C班参赛作品获奖数量为,补图如下:;(3)A班的获奖率为 ,B班的获奖率为,C班的获奖率为50%,D班的获奖率为,故C班的获奖率高.22、 (1);(2)t=1;(3).【分析】(1)先求出AC,用三角函数求出AD,即可得出结论;(2)利用ADDQAC,即可得出结论;(3)分两种情况,利用三角形的面积公式和面积差即可得出结论.【详解】解:在中,.,在中,.在中,.点和点重
22、合,;当时,;当时,如图2,在中,【点睛】此题是三角形综合题,主要考查了等腰三角形的判定和性质,锐角三角函数,正确作出图形是解本题的关键23、AB30(mm)【解析】解:如图所示,连接AB,与CO的延长线交于点E夹子是轴对称图形,对称轴是CE,且A,B为一组对称点,CEAB,AEEB在RtAEC和RtODC中,ACEOCD,RtAECRtODC,(mm),(mm)AB2AE15230(mm)24、(1)y=x2+4x+5;(2)点P(,)时,S四边形APCD最大=;(3)当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3)【解析】试题分析:(1)
23、设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,x2+4x+5),建立函数关系式S四边形APCD=2x2+10 x,根据二次函数求出极值;(3)先判断出HMNAOE,求出M点的横坐标,从而求出点M,N的坐标试题解析:(1)设抛物线解析式为y=a+9,抛物线与y轴交于点A(0,5), 4a+9=5,a=1, y=+9=-+4x+5,(2)当y=0时,-+4x+5=0,x1=1,x2=5,E(1,0),B(5,0),设直线AB的解析式为y=mx+n,A(0,5),B(5,0),m=1,n=5, 直线AB的解析式为y=x+5;设P(x,+4x+5), D(x,x
24、+5),PD=-+4x+5+x5=-+5x, AC=4, S四边形APCD=ACPD=2(-+5x)=-2+10 x,当x=时, S四边形APCD最大=,(3)如图, 过M作MH垂直于对称轴,垂足为H,MNAE,MN=AE,HMNAOE,HM=OE=1, M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8, M点的坐标为M1(1,8)或M2(3,8),A(0,5),E(1,0), 直线AE解析式为y=5x+5,MNAE,MN的解析式为y=5x+b,点N在抛物线对称轴x=2上,N(2,10+b), AE2=OA2+0E2=26 MN=AE MN2=AE2, MN
25、2=(21)2+8(10+b)2=1+(b+2)2M点的坐标为M1(1,8)或M2(3,8), 点M1,M2关于抛物线对称轴x=2对称,点N在抛物线对称轴上, M1N=M2N, 1+(b+2)2=26, b=3,或b=7,10+b=13或10+b=3 当M点的坐标为(1,8)时,N点坐标为(2,13), 当M点的坐标为(3,8)时,N点坐标为(2,3), 考点:(1)待定系数法求函数关系式;(2)函数极值额确定方法;(3)平行四边形的性质和判定25、(1);(1)t;(3)见解析;(4)t的值为或或或1【分析】(1)如图1中,作DHBE于H解直角三角形求出BH,DH即可解决问题(1)如图1中,由PFCB,可得,由此构建方程即可解决问题(3)分三种情形:如图3-1中,当时,重叠部分是平行四边形PBQF如图3-1中,当时,重叠部分是五边形PBQRT如图3-3中,当1t1时,重叠部分是四边形PBCT,分别求解即可解决问题(4)分四种情形:如图4-1中,当MNAB时,设CM交BF于T如图4-1中,当MNBC时如图4-3中,当MNAB时当点P与点D重合时,MNBC,分别求解即可【详解】解:(1)如图1中,作DHBE于H 在RtBCD中,DHC90,CD5,tanDCH,DH4,CH3,BHBC+CH5+38
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中山职业技术学院《电能计量技术》2023-2024学年第一学期期末试卷
- 昭通学院《智能终端与移动应用开发》2023-2024学年第一学期期末试卷
- 云南现代职业技术学院《传递过程导论》2023-2024学年第一学期期末试卷
- 企业市值管理中财务透明度的提升策略研究
- DB2201T 64-2024 梅花鹿布鲁氏菌病胶体金免疫层析检测方法
- 职业导论-房地产经纪人《职业导论》真题汇编1
- 房地产经纪操作实务-《房地产经纪操作实务》押题密卷2
- 年度培训工作总结
- 119消防安全月活动方案
- 二零二五年度废塑料编织袋回收与再生PE膜合同3篇
- 关于提升高寒缺氧气候条件下队伍综合救援水平的思考
- 2024年四川省成都市锦江区中考数学一诊试卷(附答案解析)
- 小学生中医药文化知识科普传承中医文化弘扬国粹精神课件
- ASME材料-设计许用应力
- 吸痰护理操作
- 室内灯光设计总结报告
- 子宫动脉栓塞术后的护理
- 五年级数学(小数乘法)计算题及答案
- 第十七章-阿法芙·I·梅勒斯的转变理论
- 计算机应用技术专业汇报课件
- 档案基础业务培训课件
评论
0/150
提交评论