小学几何总复习_第1页
小学几何总复习_第2页
小学几何总复习_第3页
小学几何总复习_第4页
小学几何总复习_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、小学几何总复习S=r2S=abS=a2S= ah s= (a+b)hS=ahrr平面图形面积计算公式推导过程S= (a+b)hS= ahS=ahS=ab(h)S=a2平面图形面积计算公式的联系3.143.145.281324.283.2815.28=5.2824.28=8.563.143.14=9.859633.28=9.845322.56如果画一般梯形,不易求出面积,因不知道梯形的高。3 3 0.284.285这个梯形符合勾股定理:32+42=52(4.28+0.28)32=6.841.棱长总和:长方体,正方体都有12条棱2.表面积: 长方体:S长=(ab+ac+bc)2 正方体:S正=6a

2、2 圆柱:S侧 =C底h S表 = S侧+2S底 (S侧+S底)第二部分:立体图形复习3.体积:V长=abh=ShV正=a3=ShV长=ShV圆柱=S底hS底hV锥= C圆hC圆hrr2圆柱体表面积=底面周长(高+半径)当无盖(或底)时所需材料面积 底面周长(高+ 半径)圆柱表面积计算方法(补充)C长方形C正方形C圆hhhC三角形hS侧=Ch直柱体侧面积直柱体表面积=侧面积+2倍底面积直柱体侧面积和表面积V=abhV=a3V=shV=sh直柱体直柱体体积三棱柱:V=sh四棱柱:V=sh等底等高时V柱= 3V锥V锥= V柱等底等体积时h锥= 3h柱h柱= h锥圆柱与圆锥底面积、高、体积之间的关系

3、等高等体积时s锥= 3s柱s柱= s锥如左图所示,圆锥的高是圆柱的 ,圆柱与圆锥底面积的比是5:4,圆锥的体积是圆柱的 。可以按份列表来解答问题254高底面积体积圆柱圆锥31515 =四、掌握小学几何知识的思想方法 1.渗透数形结合思想。 某部队有解放军战士若干人,正好排成一个方阵,若将此方阵改排成长方阵,因而减少6行,同时各行均增加10人。问战士人数是多少?解:设原方阵每行x人。 6x=10(x-6) 6x=10 x-60 4x=60 x=151515=225(人)2.渗透分类思想 分类就是把所研究的问题按照某种标准分成若干种情况,然后分情况解决问题,使整个问题得到解决。小学几何中已学过分类

4、的问题,如三角形按角分,可分为锐角三角形、直角三角形、钝角三角形。直角三角形锐角三角形钝角三角形三角形按角分类解法:1628=4(cm)利用转化的思想解决问题 例2:下图长方形中黄色部分面积为a平方厘米,求长方形面积。S阴影=S长方形解答:因为长方形是黄色面积的2倍,所以用a2=2a平方厘米。在一个底面半径是10厘米的圆柱形状的容器中装着一些水,水里放了一个底面半径5厘米的圆锥形状的铅锤。当铅锤从容器中取出后,容器中水面下降5毫米。铅锤的高是多少厘米?10cm5mm正确列式:(1023.140.53)(3.1452)错例1:(1023.140.5)(3.1452)错例2:(1023.1453)

5、(3.1452)等积变形例3:列方程解:设铅锤的高x厘米。 52 x=102 0.5 一只装有水的圆柱形玻璃杯,底面积是80平方厘米,水深8厘米。现将一个底面积是16平方厘米的长方体铁块竖放在水中后,仍有一部分铁块露在外面。现在的水深多少厘米?解法一: 808(8016) =640 64 =10(厘米)解法二:设水面上升x厘米。 80 x=16(8+x) 80 x=128+16x 64x=128 x=2 8+2=10(厘米)例4:4 、渗透归纳思想 研究一般性问题时,在观察和实验的基础上,归纳出由特殊现象到一般现象的规律和性质,这种从特殊到一般的思维方式称为归纳思想。 C长方形C正方形C圆hh

6、hC三角形hS侧=Ch直柱体侧面积直柱体表面积=侧面积+2倍底面积直柱体侧面积和表面积V=abhV=a3V=shV=sh直柱体直柱体体积五、解决小学几何知识的典型题目1.正方形与圆2.最大与最小3.正方体所有可能的截面类型4.立体图形的切割与拼合5 .杂题 圆的半径扩大(或缩小)a倍,直径和周长也随着扩大(或缩小)a倍,而圆的面积则扩大(或缩小)a2倍。 圆的半径与直径、周长成正比例,半径与面积不成比例。 正方形的边长扩大(或缩小)a倍,周长也扩大(或缩小)a倍,而面积扩大(或缩小)a2倍。 正方形边长与周长成正比例,边长与面积不成比例。1.正方形与圆 独立思考,认真观察,下面图形中哪个阴影部

7、分的面积大?(每个正方形边长相等) (1)(2)(3)(4)(5)(6) 2.最大与最小40cm20cm指定深度为5厘米例1:下图是一张长40厘米,宽20厘米的长方形铁板,要把这张铁板焊一个深5厘米的盒子(无盖),让这个长方形铁盒的容积有三种大小不同的规格,应该怎样设计与使用这块铁板?容积最大解:20205 =2000(平方厘米)解:30105 =1500(平方厘米)解:35105 =1750(平方厘米)分析与解:甲圆柱的底面半径为5厘米,高10厘米。乙圆柱底面半径10厘米,高5厘米。这两个圆柱的表面积谁大?大的表面积是小的表面积的多少倍?解法一:利用所给条件分别求出两个 圆柱的表面积,再求倍

8、数关系。510510甲乙解法二:S甲表:S乙表 =2 r甲( h甲+ r甲): 2 r乙( h乙+ r乙) = r甲( h甲+ r甲) : r乙( h乙+ r乙) =r甲: r乙 = 5 :10 =1 : 2例2截面面积最小1224 412244截面面积最大1224412244(单位:厘米)长方体垂直于长、宽、高的截面 例3:要把3本长20厘米、宽12厘米、高6厘米的现代汉语词典包装起来,至少要准备多少平方厘米的包装纸?(重合处不计)分析:只要使长方体物体最大的面重合,就能使包装纸的表 面积最小。 用3个长方体的表面积总和减去4个重合面面积。 (2012+206+126)23-20124 20

9、122+(206+126)23 正方体的截面中,不可能出现直角三角形、钝角三角形,可能出现锐角三角形、等边或等腰三角形3.正方体所有可能的截面类型 可能出现正方形、矩形不可能出现非矩形的平行四边形及直角梯形,可能出现等腰梯形可能出现五边形,不可能出现正五边形可能出现正六边形及六边形不可能出现七边形及多于七边的多边形 研究者北大附中学生:王明天 陆程遂 长方形正方形圆椭圆4.立体图形的切割三角形圆 柱长方体圆锥圆截成圆锥和圆台6 把两个底面半径2厘米,高10厘米的圆柱拼成一个大圆柱,表面积增加了多少平方厘米? 将一个底面直径12厘米,高4厘米的圆柱形木料沿底面直径和高,从上到下劈成相等的两块(如

10、图),每块木料的表面积是多少平方厘米?62 将一块圆柱形状的木料如下图劈开,拼成了一个近似的长方体。这个近似长方体的表面积是多少平方分米?立体图形的切拼实例从一个棱长10厘米的正方体木块上截去一个棱长2厘米的小正方体,剩下的表面积是多少平方厘米?正方体切割表面积不变10106表面积多了2个小正方形的面积10106+222表面积多了4个小正方形的面积10106+224在 复习“平行”概念:在同一平面内,两条永不相交的直线互相平行。老师 可以出示下列几组变式让学生去分辨并感知:例4:运用变式,把握实质 让学生说说,三幅图中线a与线b是否平行,为什么?通过这组变式练习,我相信学生有可能真正领会“平行

11、”的实质了。 例1:小洁给妈妈买了一件生日礼物。礼品的包装盒长25厘米,宽10厘米,高4厘米。售货员用丝带如图这样进行捆扎,做蝴蝶结用了15厘米。捆扎用的丝带全长多少厘米?25104252+104+46+155 . 杂题解法一:空圆柱容积+装有液体的圆柱容积=瓶子的容积。 3.1452(36 -30)+3.145224解法二:空圆柱与装有液体的圆柱等底,将它们拼在一起,成为一个底面直径10厘米,高为30厘米(36-30+24)的圆柱体,求出这个圆柱体的容积,就计算出了瓶子的容积。3.1452(36-30+24)半径 102=5(厘米)302436 (单位:厘米)10例2:瓶子的容积是多少?解法四:与上面想法类似,可以求出空圆柱的容积后再乘5246+1 ,就可以得到瓶子的容积。302436 (单位:厘米)103.1452(36-30)(4+1)解法三:先求出空圆柱的高6厘米,在等底的情况下,6厘米是24厘米的几分之几,那么高为6厘米的圆柱的容积就是高

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论