2023届江苏省苏州高新区第二中学数学九上期末经典试题含解析_第1页
2023届江苏省苏州高新区第二中学数学九上期末经典试题含解析_第2页
2023届江苏省苏州高新区第二中学数学九上期末经典试题含解析_第3页
2023届江苏省苏州高新区第二中学数学九上期末经典试题含解析_第4页
2023届江苏省苏州高新区第二中学数学九上期末经典试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在边长为1的小正方形网格中,ABC的三个顶点均在格点上,若向正方形网格中投针,落在ABC内部的概率是( )ABCD2如图,在正方形网格中,线段AB是线段AB绕某点顺时针旋转一定角度所得,点A与点A是对应点,则这个旋转的角度大小可能是()A45B60C90D1353已知是关于的一元二次方程的解,则等于( )A1B-2C-1D24如图是由几个大小相同的小正方体组成的立体图形的俯视图,则这个立体图形可能是下图中的( )ABCD5如图,D是ABC的边BC上一点,已知AB=4,AD=1DAC=B,若ABD的面积为a,则ACD的面积为( )AaB

3、12aC13aD23a6不论取何值时,抛物线与轴的交点有( )A0个B1个C2个D3个7一个小组有若干人,新年互送贺年卡一张,已知全组共送贺年卡72张,则这个小组有()A12人B18人C9人D10人8将以点为位似中心放大为原来的2倍,得到,则等于( )ABCD9方程的解是( )A0B3C0或3D0或310已知二次函数yax2+bx+c的x、y的部分对应值如表:则该函数的对称轴为()Ay轴B直线xC直线x1D直线x二、填空题(每小题3分,共24分)11如图,点A是反比例函数的图象上的一点,过点A作ABx轴,垂足为B,点C为y轴上的一点,连接AC,BC,若ABC的面积为4,则k的值是_12如图,一

4、辆汽车沿着坡度为的斜坡向下行驶50米,则它距离地面的垂直高度下降了 米.13已知二次函数的顶点坐标为,且与轴一个交点的横坐标为,则这个二次函数的表达式为_14经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是_15如图,在坐标系中放置一菱形,已知,先将菱形沿轴的正方向无滑动翻转,每次翻转,连续翻转2019次,点的落点依次为,则的坐标为_.16在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程以下是利用计算机模拟的摸球试验统计表:摸

5、球实验次数100100050001000050000100000“摸出黑球”的次数36387201940091997040008“摸出黑球”的频率(结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_(结果保留小数点后一位)17如图,在矩形ABCD中,DEAC,垂足为E,且tanADE,AC5,则AB的长_18如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则_三、解答题(共66分)19(10分)如图,在等腰中,是上一点,若.(1)求的长;(2)求的值.20(6分)计算题:|3|+tan30(2017)0

6、+()-121(6分)如图,已知RtABC中,ACB90,E为AB上一点,以AE为直径作O与BC相切于点D,连接ED并延长交AC的延长线于点F(1)求证:AEAF;(2)若AE5,AC4,求BE的长22(8分)综合与探究:操作发现:如图1,在中,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接.则与的位置关系为平行;探究证明:如图2,当是锐角三角形,时,将按照(1)中的方式,以点为中心,把顺时针旋转,得到;再以点为中心,把逆时针旋转,得到.连接,探究与的位置关系,写出你的探究结论,并加以证明;探究与的位置关系,写出你的探究结论,并加以证明.23(8分)如图,在以线段AB为

7、直径的O上取一点,连接AC、BC,将ABC沿AB翻折后得到ABD(1)试说明点D在O上;(2)在线段AD的延长线上取一点E,使AB2=ACAE,求证:BE为O的切线;(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.24(8分)某市百货商店服装部在销售中发现“米奇”童装平均每天可售出件,每件获利元为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,经过市场调查,发现如果每件童装每降价元,则平均每天可多售出件,要想平均每天在销售这种童装上获利元,那么每件童装应降价多少元?25(10分)解下列方程: (1); (2).26(10分)如图,抛物

8、线yax2bxc经过ABC的三个顶点,与y轴相交于(0,),点A坐标为(1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上(1)求该抛物线的函数解析式;(2)点F为线段AC上一动点,过点F作FEx轴,FGy轴,垂足分别为点E,G,当四边形OEFG为正方形时,求出点F的坐标;(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由参考答案一、选择题(每小题3分,共

9、30分)1、C【分析】先分别求出正方形和三角形的面积,然后根据概率公式即可得出答案.【详解】正方形的面积=14=4三角形的面积=落在ABC内部的概率=故答案选择C.【点睛】本题考查的是概率的求法,解题的关键是用面积之比来代表事件发生的概率.2、C【分析】如图:连接AA,BB,作线段AA,BB的垂直平分线交点为O,点O即为旋转中心连接OA,OB,AOA即为旋转角【详解】解:如图:连接AA,BB,作线段AA,BB的垂直平分线交点为O,点O即为旋转中心连接OA,OB,AOA即为旋转角,旋转角为90故选:C【点睛】本题考查了图形的旋转,掌握作图的基本步骤是解题的关键3、C【分析】方程的解就是能使方程的

10、左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n的方程,就可以求出m+n的值【详解】将x=1代入方程式得1+m+n=0,解得m+n=-1故选:C【点睛】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题4、D【分析】由俯视图判断出组合的正方体的几何体的列数即可【详解】根据给出的俯视图,这个立体图形的第一排至少有3个正方体,第二排有1个正方体故选:D【点睛】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案5、C【详解】解:DAC=B,C=C,ACDBCA

11、,AB=4,AD=1,ACD的面积:ABC的面积为1:4,ACD的面积:ABD的面积=1:3,ABD的面积为a,ACD的面积为13a,故选C【点睛】本题考查相似三角形的判定与性质,掌握相关性质是本题的解题关键6、C【分析】首先根据题意与轴的交点即,然后利用根的判别式判定即可.【详解】由题意,得与轴的交点,即不论取何值时,抛物线与轴的交点有两个故选C.【点睛】此题主要考查根据根的判别式判定抛物线与坐标轴的交点,熟练掌握,即可解题.7、C【解析】试题分析:设这个小组有人,故选C考点:一元二次方程的应用8、C【分析】根据位似图形都是相似图形,再直接利用相似图形的性质:面积比等于相似比的平方计算可得【

12、详解】)将OAB放大到原来的2倍后得到OAB,SOAB:SOAB=1:4.故选:C.【点睛】本题考查位似图形的性质,解题关键是首先掌握位似图形都是相似图形 9、D【解析】运用因式分解法求解.【详解】由得x(x-3)=0所以,x1=0,x2=3故选D【点睛】掌握因式分解法解一元二次方程.10、B【分析】根据表格中的数据可以写出该函数的对称轴,本题得以解决【详解】解:由表格可得,该函数的对称轴是:直线x,故选:B【点睛】本题考查二次函数的性质,解题的关键是熟练运用二次函数的性质,本题属于基础题型二、填空题(每小题3分,共24分)11、-8【解析】连结OA,如图,利用三角形面积公式得到SOABSAB

13、C4,再根据反比例函数的比例系数k的几何意义得到|k|4,然后去绝对值即可得到满足条件的k的值【详解】解:连结OA,如图,ABx轴,OCAB,SOABSABC4,而SOAB|k|,|k|4,k0,k8故答案为8【点睛】本题考查了反比例函数的比例系数k的几何意义:在反比例函数y图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|12、25【分析】设出垂直高度,表示出水平距离,利用勾股定理求解即可【详解】解:设垂直高度下降了x米,则水平前进了x米根据勾股定理可得:x2+(x)2=1解得x=25,即它距离地面的垂直高度下降了25米【点睛】此题考查三角函数的应用.关键

14、是熟悉且会灵活应用公式:tan(坡度)=垂直高度水平宽度,综合利用了勾股定理13、【分析】已知抛物线的顶点坐标,则可设顶点式,把(3,0)代入求出的值即可【详解】设二次函数的解析式为,抛物线与轴一个交点的横坐标为,则这个点的坐标为:(3,0),将点(3,0)代入二次函数的解析式得,解得:,这个二次函数的解析式为:,故答案为:【点睛】本题主要考查了用待定系数法求二次函数解析式,在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解14、50(1x)2=1【解析】由题意可得,50(1x)=1,故答案为50(1x)=1.15、(2326,0)【分析】根据

15、题意连接AC,根据条件可以求出AC,画出第5次、第6次、第7次翻转后的图形,容易发现规律:每翻转6次,图形向右平移2由于2029=3366+3,因此点向右平移2322(即3362)即可到达点,根据点的坐标就可求出点的坐标【详解】解:连接AC,如图所示:四边形OABC是菱形,OA=AB=BC=OCABC=60,ABC是等边三角形AC=ABAC=OAOA=2,AC=2画出第5次、第6次、第7次翻转后的图形,如上图所示由图可知:每翻转6次,图形向右平移22029=3366+3,点向右平移2322(即3362)到点的坐标为(2,0),的坐标为(2+2322,0),的坐标为(2326,0)故答案为:(2

16、326,0)【点睛】本题考查菱形的性质、等边三角形的判定与性质等知识,考查操作、探究、发现规律的能力,发现“每翻转6次,图形向右平移2”是解决本题的关键16、0.1【解析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.1附近,故摸到白球的频率估计值为0.1;故答案为:0.1【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率17、3.【分析】先根据同角的余角相等证明ADEACD,在ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,

17、又AC=5,从而求出DC的值即为AB.【详解】四边形ABCD是矩形,ADC90,ABCD,DEAC,AED90,ADE+DAE90,DAE+ACD90,ADEACD,tanACDtanADE,设AD4k,CD3k,则AC5k,5k5,k1,CDAB3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.18、【解析】利用位似图形的性质结合位似比等于相似比得出答案【详解】四边形ABCD与四边形EFGH位似,其位似中心为点O,且,则,故答案为:【点睛】本题考查了位似的性质,熟练掌握位似的性

18、质是解题的关键.三、解答题(共66分)19、 (1)AD=2;(2)【分析】(1)先作,由等腰三角形,得到,根据勾股定理可得;(2)由长度,再根据锐角三角函数即可得到答案.【详解】(1)作等腰三角形,(2)【点睛】本题考查等腰三角形和锐角三角函数,解题的关键是掌握等腰三角形和锐角三角函数.20、4【分析】根据零指数幂、绝对值、负整数指数幂及三角函数值解答即可【详解】解:原式3+21+34【点睛】本题考查了零指数幂、绝对值、负整数指数幂及三角函数值,熟练掌握运算法则是解本题的关键21、(1)证明见解析;(2)【分析】(1)连接OD,根据切线的性质得到ODBC,根据平行线的判定定理得到ODAC,求

19、得ODEF,根据等腰三角形的性质得到OEDODE,等量代换得到OEDF,于是得到结论;(2)根据相似三角形的判定和性质即可得到结论【详解】证明:(1)连接OD,BC切O于点D,ODBC,ODC90,又ACB90,ODAC,ODEF,OEOD,OEDODE,OEDF,AEAF;(2)ODACBODBAC,AE5,AC4,即,BE【点睛】本题考查了切线的性质,平行线的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键22、,证明详见解析;,证明详见解析.【分析】(1)根据旋转角的定义即可得到,即可证得与的位置关系.(2)过点作,交于点,证明四边形为平行四边形即可解决问题.【详解】.证明:由

20、旋转的性质,知.又,.证明:过点作,交于点.又由旋转的性质知,.又四边形为平行四边形.【点睛】本题考查旋转变换,掌握旋转的性质及平行四边形的判定和性质是解题的关键23、(1)证明见解析;(2)证明见解析;(3)EF=【解析】分析:(1)由翻折知ABCABD,得ADB=C=90,据此即可得;(2)由AB=AD知AB2=ADAE,即,据此可得ABDAEB,即可得出ABE=ADB=90,从而得证;(3)由知DE=1、BE=,证FBEFAB得,据此知FB=2FE,在RtACF中根据AF2=AC2+CF2可得关于EF的一元二次方程,解之可得详解:(1)AB为O的直径,C=90,将ABC沿AB翻折后得到A

21、BD,ABCABD,ADB=C=90,点D在以AB为直径的O上;(2)ABCABD,AC=AD,AB2=ACAE,AB2=ADAE,即,BAD=EAB,ABDAEB,ABE=ADB=90,AB为O的直径,BE是O的切线;(3)AD=AC=4、BD=BC=2,ADB=90,AB=,解得:DE=1,BE=,四边形ACBD内接于O,FBD=FAC,即FBE+DBE=BAE+BAC,又DBE+ABD=BAE+ABD=90,DBE=BAE,FBE=BAC,又BAC=BAD,FBE=BAD,FBEFAB,即,FB=2FE,在RtACF中,AF2=AC2+CF2,(5+EF)2=42+(2+2EF)2,整理

22、,得:3EF2-2EF-5=0,解得:EF=-1(舍)或EF=,EF=点睛:本题主要考查圆的综合问题,解题的关键是掌握圆周角定理、翻折的性质、圆内接四边形的性质及相似三角形的判定与性质、勾股定理等知识点24、应该降价元【解析】设每件童装应降价x元,那么就多卖出2x件,根据每天可售出20件,每件获利40元为了扩大销售,减少库存,增加利润,商场决定采取适当的降价措施,要想平均每天在销售这种童装上获利1200元,可列方程求解【详解】设每件童装应降价元,由题意得:,解得:或因为减少库存,所以应该降价元【点睛】本题考查一元二次方程的应用,关键找到降价和卖的件数的关系,根据利润列方程求解25、(1),;(2),,【分析】(1)利用求根公式法解方程;(2)移项,然后利用因式分解法解方程【详解】(1)解:,;(2)解:或,【点睛】本题考查了解一元二次方程-因式分解法和公式法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法26、(1)y=x2+;(2)(1,1);(3)当DMN是等腰三角形时,t的值为,3或1【解析】试题分析:(1)易得抛物线的顶点为(0,),然后只需运用待定系数法,就可求出抛物线的函数关系表达式;(2)当点F在第一象限时,如图1,可求出点C的坐标,直线AC的解析式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论