2023届山东省枣庄市第九中学数学九年级第一学期期末综合测试模拟试题含解析_第1页
2023届山东省枣庄市第九中学数学九年级第一学期期末综合测试模拟试题含解析_第2页
2023届山东省枣庄市第九中学数学九年级第一学期期末综合测试模拟试题含解析_第3页
2023届山东省枣庄市第九中学数学九年级第一学期期末综合测试模拟试题含解析_第4页
2023届山东省枣庄市第九中学数学九年级第一学期期末综合测试模拟试题含解析_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在中,点D,E分别为AB,AC边上的点,且,CD、BE相较于点O,连接AO并延长交DE于点G,交BC边于点F,则下列结论中一定正确的是ABCD2已知,则锐角的取值范围是( )ABCD3若二次函数y-x2+px+q的图像经过A(,n)、B(0,y1)、C(,n)、D(,y2)、E(,y3),则y1、y2、y3的大小关系是()Ay3y2y1By3y1y2Cy1y2y3Dy2y3y14如图,反比例函数第一象限内的图象经过的顶点,且轴,点,的横坐标分别为1,3,若,则的值为( )A1BCD25如图,正方形的顶点分别在轴和轴上,与双曲线恰好交于

3、的中点. 若,则的值为( )A6B8C10D126下列事件中,属于必然事件的是( )A方程无实数解B在某交通灯路口,遇到红灯C若任取一个实数a,则D买一注福利彩票,没有中奖7如图,点A(m,m+1)、B(m+3,m1)是反比例函数与直线AB的交点,则直线AB的函数解析式为()ABCD8若我们把十位上的数字比个位和百位上数字都小的三位数,称为“”或,如,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“”数的槪率为( )ABCD9如图,在中,点、分别在边、上,且与关于直线DE对称若,则( )A3B5CD10如图,,四点都在上,则的度数为( )ABCD二、填空题(每小题

4、3分,共24分)11某公司生产一种饮料是由A,B两种原料液按一定比例配成,其中A原料液的原成本价为10元/千克,B原料液的原成本价为5元/千克,按原售价销售可以获得50%的利润率,由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高_元/千克12一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是_.13如图,在平面直角坐标系中,都是等腰直角三角形,点都在轴上,点与原点重合,点都在直线上,点在轴上,轴, 轴,若点的横坐标为1,

5、则点的纵坐标是_14在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在轴右侧,P点的坐标为(0,4)连接PA,PB(1)PAB的面积的最小值为_;(2)当时,=_15分别写有数字0,2,4,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_16已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是_cm2.17将二次函数y2x2的图像向上平移3个单位长度,再向右平移2个单位长度,得到的图像所对应的函数表达式为_18有一条抛物线,三位学生分别说出了它的一些性质:甲说:对称轴是直线;乙说:与轴的两个交点的距离为6;丙说:顶点与轴的交点围成的三

6、角形面积等于9,则这条抛物线解析式的顶点式是_.三、解答题(共66分)19(10分)如图,利用尺规,在ABC的边AC下方作CAEACB,在射线AE上截取ADBC,连接CD,并证明:CDAB(尺规作图要求保留作图痕迹,不写作法)20(6分)用配方法解方程:x28x+1=021(6分)如图,抛物线交轴于两点,与轴交于点,连接点是第一象限内抛物线上的一个动点,点的横坐标为(1)求此抛物线的表达式;(2)过点作轴,垂足为点,交于点试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形若存在,请求出此时点的坐标,若不存在,请说明理由;(3)过点作,垂足为点请用含的代数式表示线段的长,

7、并求出当为何值时有最大值,最大值是多少?22(8分)中国古贤常说万物皆自然,而古希腊学者说万物皆数.同学们还记得我们最初接触的数就是“自然数”吧!在数的学习过程中,我们会对其中一些具有某种特性的自然数进行研究,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数“喜数”.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的倍(为正整数),我们就说这个自然数是一个“喜数”.例如:24就是一个“4喜数”,因为25就不是一个“喜数”因为(1)判断44和72是否是“喜数”?请说明理由;(2)试讨论是否存在“7喜数”若存在请写出来,若不存在

8、请说明理由.23(8分)如图1,为等腰三角形,是底边的中点,腰与相切于点,底交于点,(1)求证:是的切线;(2)如图2,连接,交于点,点是弧的中点,若,求的半径24(8分)如图,抛物线(a0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶

9、点的三角形和AEM相似?若存在,求出此时m的值,并直接判断PCM的形状;若不存在,请说明理由25(10分)足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售为本,销售单价为元.(1)请直接写出与之间的函数关系式和自变量的取值范围;(2)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润元最大?最大利润是多少元?26(10分)已知如图AB EF CD, (1)CFGCBA吗?为什么?(2)求 的值参考答案一

10、、选择题(每小题3分,共30分)1、C【分析】由可得到,依据平行线分线段成比例定理和相似三角形的性质进行判断即可【详解】解:A., ,故不正确;B. , ,故不正确;C. ,,, ,故正确;D. , ,故不正确;故选C【点睛】本题主要考查的是相似三角形的判定和性质,熟练掌握相似三角形的性质和判定定理是解题的关键2、B【分析】根据锐角余弦函数值在0到90中,随角度的增大而减小进行对比即可;【详解】锐角余弦函数值随角度的增大而减小,cos30=,cos45=,若锐角的余弦值为,且则30 45;故选B【点睛】本题主要考查了锐角三角函数的增减性,掌握锐角三角函数的增减性是解题的关键.3、A【分析】利用

11、A点与C点为抛物线上的对称点得到对称轴为直线x=2,然后根据点B、D、E离对称轴的远近求解【详解】二次函数y-x2+px+q的图像经过A(,n)、C(,n),抛物线开口向下,对称轴为直线,点D(,y2)的横坐标:,离对称轴距离为,点E(,y3)的横坐标:,离对称轴距离为,B(0,y1)离对称轴最近,点E离对称轴最远,y3y2y1故选:A【点睛】本题考查了二次函数函数的性质,二次函数图象上点的坐标特征:二次函数图象上点的坐标特征满足其解析式,根据抛物线上的对称点坐标得到对称轴是解题的关键4、C【分析】先表示出CD,AD的长,然后在RtACD中利用ACD的正切列方程求解即可【详解】过点作,点、点的

12、横坐标分别为1,3,且,均在反比例函数第一象限内的图象上,CD=2,AD=k-,tanACD=, ,即,故选:C【点睛】本题考查了等腰三角形的性质,解直角三角形,以及反比例函数图像上点的坐标特征,熟练掌握各知识点是解答本题的关键5、D【分析】作EHx轴于点H,EGy轴于点G,根据“OB=2OA”分别设出OB和OA的长度,利用矩形的性质得出EBGBAO,再根据相似比得出BG和EG的长度,进而写出点E的坐标代入反比例函数的解析式,即可得出答案.【详解】作EHx轴于点H,EGy轴于点G设AO=a,则OB=2OA=2aABCD为正方形ABC=90,AB=BCEGy轴于点GEGB=90EGB=BOA=9

13、0EBG+BEG=90BEG=ABOEBGBAOE是BC的中点BG=,EG=aOG=BO-BG=点E的坐标为E在反比例函数上面解得:AO=,BO=故答案选择D.【点睛】本题考查的是反比例函数与几何的综合,难度系数较高,解题关键是根据题意求出点E的坐标.6、A【分析】根据必然事件就是一定发生的事件,即发生的概率是1的事件即可得出答案【详解】解:A、方程2x2+30的判别式0423240,因此方差2x2+30无实数解是必然事件,故本选项正确;B、在某交通灯路口,遇到红灯是随机事件,故本选项错误;C、若任取一个实数a,则(a+1)20是随机事件,故本选项错误;D、买一注福利彩票,没有中奖是随机事件,

14、故本选项错误;故选:A【点睛】本题主要考察随机事件,解题关键是熟练掌握随机事件的定义.7、B【分析】根据反比例函数的特点k=xy为定值,列出方程,求出m的值,便可求出一次函数的解析式;【详解】由题意可知,m(m+1)=(m+1)(m-1)解得m=1A(1,4),B(6,2);设AB的解析式为 解得AB的解析式为 故选B.【点睛】此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式,比较简单8、C【分析】首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可【详解】解:由2,3,4这三个数字组成的无重复数字为234,243,324,34

15、2,432,423六个,而“V”数有2个,即324,423,故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为,故选:C【点睛】本题考查的是用列举法求概率的知识注意概率=所求情况数与总情况数之比9、D【分析】过点F作FHAD,垂足为点H,设,根据勾股定理求出AC,FH,AH,设,根据轴对称的性质知,在RtBFE中运用勾股定理求出x,通过证明,求出DH的长,根据求出a的值,进而求解【详解】过点F作FHAD,垂足为点H,设,由题意知,由勾股定理知,与关于直线DE对称,设,则,在RtBFE中,解得,即,解得,故选D【点睛】本题考查了轴对称图形的性质,相似三角形

16、的判定与性质,勾股定理,等腰直角三角形的性质等,巧作辅助线证明是解题的关键10、C【分析】根据圆周角定理求出A,根据圆内接四边形的性质计算即可【详解】由圆周角定理得,A=BOD=,四边形ABCD为O的内接四边形,BCD=A=,故选:C.【点睛】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.二、填空题(每小题3分,共24分)11、1【分析】设配制比例为1:x,则A原液上涨后的成本是10(1+20%)元,B原液上涨后的成本是5(1+40%)x元,配制后的总成本是(10+5x)(1+),根据题意可得方程10(1+20%)+5(1+40%)x(10+5x)(1+),解可得配

17、制比例,然后计算出原来每千克的成本和售价,然后表示出此时每千克成本和售价,即可算出此时售价与原售价之差【详解】解:设配制比例为1:x,由题意得:10(1+20%)+5(1+40%)x(10+5x)(1+),解得x4,则原来每千克成本为:1(元),原来每千克售价为:1(1+50%)9(元),此时每千克成本为:1(1+)(1+25%)10(元),此时每千克售价为:10(1+50%)15(元),则此时售价与原售价之差为:1591(元)故答案为:1【点睛】本题考查了一元一次方程的应用,仔细阅读题目,找到关系式是解题的关键12、48【分析】首先利用圆的面积公式即可求得侧面积,利用弧长公式求得圆锥的底面半

18、径,得到底面面积,据此即可求得圆锥的全面积【详解】解:侧面积是:,底面圆半径为:,底面积,故圆锥的全面积是:,故答案为:48【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长13、【解析】由题意,可得,设,则,解得,求出的坐标,再设,则,解得,故求出的坐标,同理可求出、的坐标,根据规律 即可得到的纵坐标.【详解】解:由题意,可得,设,则,解得,设,则,解得,设,则,解得,同法可得,的纵坐标为,故答案为【点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出、,再发现规律即可求解.14、

19、 16 【分析】(1)设A(m,km),B(n,kn),联立解析式,利用根与系数的关系建立之间的关系,列出面积函数关系式,利用二次函数的性质求解最小值即可;(2)先证明平分 得到,把转化为,利用两点间的距离公式再次转化,从而可得答案【详解】解:(1)如图,设A(m,km),B(n,kn),其中m1,n1 得: 即, 当k=1时,PAB面积有最小值,最小值为 故答案为(2)设设A(m,km),B(n,kn),其中m1,n1 得: 即, 设直线PA的解析式为y=ax+b,将P(1,4),A(m,km)代入得:,解得:, 令y=1,得直线PA与x轴的交点坐标为 同理可得,直线PB的解析式为 直线PB

20、与x轴交点坐标为 直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称平分,到的距离相等, 而 , 过作轴于,过作轴于,则 故答案为:【点睛】本题是代数几何综合题,难度很大考查了二次函数与一次函数的基本性质,一元二次方程的根与系数的关系相似三角形的判定与性质,角平分线的判定与性质,解答中首先得到基本结论,即PA、PB的对称性,正确解决本题的关键是打好数学基础,将平时所学知识融会贯通、灵活运用15、【分析】根据概率的求解公式,首先弄清非负数卡片有3张,共有5张卡片,即可算出概率.【详解】由题意,得数字是非负数的卡片有0,2,共3张,则抽到非负数的概率是,故答案为:.【点睛】此题主

21、要考查概率的求解,熟练掌握,即可解题.16、15【解析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【详解】设圆锥母线长为l,r=3,h=4, 母线l=,S侧=2r5=235=15,故答案为15.【点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.17、y2(x2)23【分析】根据平移的规律:左加右减,上加下减可得函数解析式【详解】解:将抛物线y=2x2向上平移3个单位长度,再向右平移2个单位长度后,得到的抛物线的表达式为y=2(x-2)2+3,故答案为:y2(x2)23.【点睛】此题主要考查了二次函数图象与几何

22、变换,关键是掌握平移的规律18、,【分析】根据对称轴是直线x=2,与x轴的两个交点距离为6,可求出与x轴的两个交点的坐标为(-1,0),(5,0);再根据顶点与x轴的交点围成的三角形面积等于9,可得顶点的纵坐标为1,然后利用顶点式求得抛物线的解析式即可【详解】解:对称轴是直线x=2,与x轴的两个交点距离为6,抛物线与x轴的两个交点的坐标为(-1,0),(5,0),设顶点坐标为(2,y),顶点与x轴的交点围成的三角形面积等于9,y=1或y=-1,顶点坐标为(2,1)或(2,-1),设函数解析式为y=a(x-2)2+1或y=a(x-2)2-1;把点(5,0)代入y=a(x-2)2+1得a=-;把点

23、(5,0)代入y=a(x-2)2-1得a=;满足上述全部条件的一条抛物线的解析式为y=-(x-2)2+1或y=(x-2)2-1故答案为:,.【点睛】此题考查了二次函数的图像与性质,待定系数法求函数解析式解题的关键是理解题意,采用待定系数法求解析式,若给了顶点,注意采用顶点式简单三、解答题(共66分)19、作图见解析,证明见解析【分析】根据作一个角等于已知角的作法画出CAE并截取AD=BC即可画出图形,利用SAS即可证明ACBCAD,可得CD=AB【详解】如图所示:ACCA,ACBCAD,ADCB,ACBCAD(SAS),CDAB【点睛】本题考查尺规作图作一个角等于已知角及全等三角形的判定与性质

24、,正确作出图形并熟练掌握全等三角形的判定定理是解题关键20、,【解析】试题分析:本题要求用配方法解一元二次方程,首先将常数项移到等号的右侧,将等号左右两边同时加上一次项系数一半的平方,即可将等号左边的代数式写成完全平方形式试题解析:x28x+1=0,x28x=1,x28x+16=1+16,(x4)2=15,解得,考点:解一元二次方程-配方法21、 (1) ;(2) 存在,或;(3) 当时,的最大值为:【解析】(1)由二次函数交点式表达式,即可求解;(2)分三种情况,分别求解即可;(3)由即可求解【详解】解:(1)由二次函数交点式表达式得:,即:,解得:,则抛物线的表达式为;(2)存在,理由:点

25、的坐标分别为,则,将点的坐标代入一次函数表达式:并解得:,同理可得直线AC的表达式为:,设直线的中点为,过点与垂直直线的表达式中的值为,同理可得过点与直线垂直直线的表达式为:,当时,如图1, 则,设:,则,由勾股定理得:,解得:或4(舍去4),故点;当时,如图1,则,则,故点;当时,联立并解得:(舍去);故点Q的坐标为:或;(3)设点,则点,有最大值,当时,的最大值为:【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系22、(1)44不是一个“喜数”, 72是一个“8喜

26、数”,理由见解析;(2)“7喜数”有4个:21、42、63、1【分析】(1)根据“n喜数”的定义解答即可;(2)设存在“7喜数”,设其个位数字为a,十位数字为b,(a,b为1到9的自然数),则10b+a=7(a+b),化简得:b=2a,由此即可得出结论【详解】(1)44不是一个“喜数”,因为,72是一个“8喜数”,因为;(2)设存在“7喜数”,设其个位数字为,十位数字为,(,为1到9的自然数),由定义可知:化简得:因为,为1到9的自然数,;,;,;,;“7喜数”有4个:21、42、63、1【点睛】本题考查了因式分解的应用掌握“n喜数”的定义是解答本题的关键23、(1)证明见解析;(2)的半径为

27、2.1【分析】(1)连接,过作于点,根据三线合一可得,然后根据角平分线的性质可得,然后根据切线的判定定理即可证出结论;(2)连接,过作于点,根据平行线的判定证出,证出,根据角平分线的性质可得,然后利用HL证出,从而得出,设的半径为,根据勾股定理列出方程即可求出结论【详解】(1)证明:如图,连接,过作于点,是底边的中点,是的切线,是的切线;(2)解:如图2,连接,过作于点点是的中点,在和中,设的半径为由勾股定理得:DK2OK2=OD2即,解得:的半径为【点睛】此题考查的是等腰三角形的性质、角平分线的性质、切线的判定及性质、全等三角形的判定及性质和勾股定理,掌握等腰三角形的性质、角平分线的性质、切

28、线的判定及性质、全等三角形的判定及性质和勾股定理是解决此题的关键24、(1)抛物线的解析式为;(2)PM=(0m3);(3)存在这样的点P使PFC与AEM相似此时m的值为或1,PCM为直角三角形或等腰三角形【解析】(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长(3)由于PFC和AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和AEM相似时,分两种情况进行讨论:PFCAEM,CFPAEM;可分别用含m的代数式表示出AE、E

29、M、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出PCM的形状【详解】解:(1)抛物线(a0)经过点A(3,0),点C(0,4),解得抛物线的解析式为(2)设直线AC的解析式为y=kx+b,A(3,0),点C(0,4),解得直线AC的解析式为点M的横坐标为m,点M在AC上,M点的坐标为(m,)点P的横坐标为m,点P在抛物线上,点P的坐标为(m,)PM=PEME=()()=PM=(0m3)(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和AEM相似理由如下:由题意,可得AE=3m,EM=,CF=m,PF=,若以P、C、F为顶点的三角形和AEM相似,分两种情况:若PFCAEM,则PF:AE=FC:EM,即():(3m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论