江苏省苏州工业园区2022年数学九上期末复习检测试题含解析_第1页
江苏省苏州工业园区2022年数学九上期末复习检测试题含解析_第2页
江苏省苏州工业园区2022年数学九上期末复习检测试题含解析_第3页
江苏省苏州工业园区2022年数学九上期末复习检测试题含解析_第4页
江苏省苏州工业园区2022年数学九上期末复习检测试题含解析_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每小题3分,共30分)1在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( )A42B45C46D482对一批衬衣进行抽检,统计合格衬衣的件数,得到合格衬衣的频数表如下:抽取件数501001502005008001000合格频数4288141176448720900估计出售2000件衬衣,其中次品大约是( )A50件B100件C150件D200件3已知正多边形的一个内角是135,则这个正多边形的边数是( )A3B4C6D84抛物线关于轴对称的抛物线的解析

3、式为( ).ABCD5河堤横断面如图所示,堤高BC5米,迎水坡AB的坡比1:,则AC的长是( )A10米B米C15米D米6如图放置的几何体的左视图是()ABCD7如图,的半径为2,圆心的坐标为,点是上的任意一点,且、与轴分别交于、两点,若点、点关于原点对称,则的最大值为( )A7B14C6D158用配方法解一元二次方程x28x9=0,下列配方法正确的是( )ABCD9若,则的值是()A1B2C3D410如图,二次函数()图象的顶点为,其图象与轴的交点,的横坐标分别为和1下列结论:;当时,是等腰直角三角形其中结论正确的个数是()A4个B1个C2个D1个二、填空题(每小题3分,共24分)11已知方

4、程x2+mx3=0的一个根是1,则它的另一个根是_12如图,点C是以AB为直径的半圆上一个动点(不与点A、B重合),且AC+BC=8,若AB=m(m为整数),则整数m的值为_13如图,的半径长为,与相切于点,交半径的延长线于点,长为,垂足为,则图中阴影部分的面积为_14若,且,则的值是_15已知,则_16在中,则的值是_17已知x=2是关于x的方程x2- 3x+k= 0的一个根,则常数k的值是_.18如图,P是等边ABC内的一点,若将PAC绕点A按逆时针方向旋转到PAB,则PAP_三、解答题(共66分)19(10分)如图1为放置在水平桌面上的台灯,底座的高为,长度均为的连杆,与始终在同一平面上

5、当,时,如图2,连杆端点离桌面的高度是多少?20(6分)如图,在平面直角坐标系中,一次函数的图象与反比例函数 ()的图象交于,两点,已知点坐标为.(1)求一次函数和反比例函数的解析式; (2)连接,求的面积. 21(6分)问题背景:如图1,在中,四边形是正方形,求图中阴影部分的面积(1)发现:如图,小芳发现,只要将绕点逆时针旋转一定的角度到达,就能将阴影部分转化到一个三角形里,从而轻松解答.根据小芳的发现,可求出图1中阴影部分的面积为_;(直接写出答案)(2)应用:如图,在四边形中,于点,若四边形的面积为,试求出的长;(3)拓展:如图,在四边形中,以为顶点作为角,角的两边分别交,于,两点,连接

6、,请直接写出线段,之间的数量关系22(8分)每年九月开学前后是文具盒的销售旺季,商场专门设置了文具盒专柜李经理记录了天的销售数量和销售单价,其中销售单价(元/个)与时间第天(为整数)的数量关系如图所示,日销量(个)与时间第天(为整数)的函数关系式为: 直接写出与的函数关系式,并注明自变量的取值范围;设日销售额为(元) ,求(元)关于(天)的函数解析式;在这天中,哪一天销售额(元)达到最大,最大销售额是多少元;由于需要进货成本和人员工资等各种开支,如果每天的营业额低于元,文具盒专柜将亏损,直接写出哪几天文具盒专柜处于亏损状态23(8分)在RtABC中,BCA90,AABC,D是AC边上一点,且D

7、ADB,O是AB的中点,CE是BCD的中线(1)如图a,连接OC,请直接写出OCE和OAC的数量关系: ;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使MONADB,ON与射线CA交于点N如图b,猜想并证明线段OM和线段ON之间的数量关系;若BAC30,BCm,当AON15时,请直接写出线段ME的长度(用含m的代数式表示)24(8分)如图,AB是的直径,AC为弦,的平分线交于点D,过点D的切线交AC的延长线于点E求证:;25(10分)已知,二次三项式x2+2x+1(1)关于x的一元二次方程x2+2x+1mx2+mx+2(m为整数)的根为有理数,求m的值;(2)在平面

8、直角坐标系中,直线y2x+n分别交x,y轴于点A,B,若函数yx2+2|x|+1的图象与线段AB只有一个交点,求n的取值范围26(10分)(问题情境)(1)古希腊著名数学家欧几里得在几何原本提出了射影定理,又称“欧几里德定理”:在直角三角形中,斜边上的高是两条直角边在斜边射影的比例中项,每一条直角边又是这条直角边在斜边上的射影和斜边的比例中项射影定理是数学图形计算的重要定理其符号语言是:如图1,在RtABC中,ACB=90,CDAB,垂足为D,则:(1)AC=ABAD;(2)BC=ABBD;(3)CD = ADBD;请你证明定理中的结论(1)AC = ABAD(结论运用)(2)如图2,正方形A

9、BCD的边长为3,点O是对角线AC、BD的交点,点E在CD上,过点C作CFBE,垂足为F,连接OF,求证:BOFBED;若,求OF的长参考答案一、选择题(每小题3分,共30分)1、C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48中位数为. 故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中

10、位数的关键.2、D【分析】求出次品率即可求出次品数量【详解】2000(件)故选:D【点睛】本题考查了样本估计总体的统计方法,求出样本的次品率是解答本题的关键3、D【分析】根据正多边形的一个内角是135,则知该正多边形的一个外角为45,再根据多边形的外角之和为360,即可求出正多边形的边数【详解】解:正多边形的一个内角是135,该正多边形的一个外角为45,多边形的外角之和为360,边数,这个正多边形的边数是1故选:D【点睛】本题考查了正多边形的内角和与外角和的知识,知道正多边形的外角之和为360是解题关键4、B【解析】先求出抛物线y=2(x2)21关于x轴对称的顶点坐标,再根据关于x轴对称开口大

11、小不变,开口方向相反求出a的值,即可求出答案.【详解】抛物线y=2(x2)21的顶点坐标为(2,1),而(2,1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=2(x2)2+1故选B【点睛】本题考查了二次函数的轴对称变换,此图形变换包括x轴对称和y轴对称两种方式.二次函数关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据关于x轴对称的点坐标特征求出新的顶点坐标,即可确定解析式. 二次函数关于y轴对称的图像,其形状不变,开口方向也不变,因此a值不变,但是顶点位置改变,只要根据关于y轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.5

12、、B【解析】RtABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长【详解】RtABC中,BC=5米,tanA=1:;AC=BCtanA=5米;故选:B【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力6、C【分析】左视图可得一个正方形,上半部分有条看不到的线,用虚线表示【详解】解:左视图可得一个正方形,上半部分有条看不到的线,用虚线表示故选C【点睛】本题考查简单组合体的三视图7、B【分析】根据“PAPB,点A与点B关于原点O对称”可知AB=2OP,从而确定要使AB取得最大值,则OP需取得最大值,然后过点M作MQx轴于点Q,确定OP的最

13、大值即可.【详解】PAPBAPB=90点A与点B关于原点O对称,AO=BOAB=2OP若要使AB取得最大值,则OP需取得最大值,连接OM,交M于点,当点P位于位置时,OP取得最小值,过点M作MQx轴于点Q,则OQ=3,MQ=4,OM=5当点P在的延长线于M的交点上时,OP取最大值,OP的最大值为3+22=7AB的最大值为72=14故答案选B.【点睛】本题考查的是圆上动点与最值问题,能够找出最值所在的点是解题的关键.8、C【分析】根据完全平方公式配方即可【详解】解:x28x9=0 x28x=9x28x16=916故选C【点睛】此题考查的是用配方法解一元二次方程,掌握完全平方公式是解决此题的关键9

14、、B【分析】根据比例的性质,可用x表示y、z,根据分式的性质,可得答案.【详解】设=k,则x=2k,y=7k,z=5k代入原式原式= 故答案为:2.【点睛】本题考查了比例的性质,解题的关键是利用比例的性质,化简求值.10、C【分析】x1,即b2a,即可求解;当x1时,yabc0,即可求解;分别判断出a,b,c的取值,即可求解;时,函数的表达式为:y(x1)(x1)=,则点A、B、D的坐标分别为:(1,0)、(1,0)(1,2),即可求解【详解】其图象与x轴的交点A,B的横坐标分别为1和1,则函数的对称轴为:x1,x1,即b2a,故不符合题意;当x1时,yabc0,符合题意;由图可得开口向上,a

15、0,对称轴x=1,a,b异号,b0,图像与y轴交于负半轴,c00,不符合题意;时,函数的表达式为:y(x1)(x1)=,则点A、B、D的坐标分别为:(1,0)、(1,0)(1,2),AB2(-1-1)2+02=16,AD2(-1-1)2+(0-2)28,BD2(1-1)2+(0-2)28,故ABD是等腰直角三角形符合题意;故选:C【点睛】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用二、填空题(每小题3分,共24分)11、-1【解析】设另一根为,则1= -1 ,解得,=1,故答案为112、6或1【分析】因为直径所

16、对圆周角为直角,所以ABC的边长可应用勾股定理求解,其中,且AC+BC=8,即可求得,列出关于BC的函数关系式,再根据二次函数的性质和三角形的三边关系得出的范围,再根据题意要求AB为整数,即可得出AB可能的长度【详解】解:直径所对圆周角为直角,故ABC为直角三角形,根据勾股定理可得,即,又AC+BC=8,AC=8-BC当BC=4时,的最小值=32,AB的最小值为AB=mm为整数m=6或1,故答案为:6或1【点睛】本题主要考察了直径所对圆周角为直角、勾股定理、三角形三边关系、二次函数的性质,解题的关键在于找出AB长度的范围13、【分析】由已知条件易求直角三角形AOH的面积以及扇形AOC的面积,根

17、据,计算即可【详解】BA与O相切于点A,ABOA,OAB=90,OA=2,AB=2,B=30,O=60,OHA=90,OAH=30,故答案为:【点睛】本题考查了切线的性质、勾股定理的运用以及扇形的面积计算,解答本题的关键是掌握扇形的面积公式14、-20 ;【分析】由比例的性质得到,从而求出a和b+c的值,然后代入计算,即可得到答案【详解】解:,;故答案为:【点睛】本题考查了比例的性质,解题的关键是熟练掌握比例的性质,正确得到,15、【分析】由已知可得x、y的关系,然后代入所求式子计算即可.【详解】解:,.故答案为:.【点睛】本题考查了比例的性质和代数式求值,属于基本题型,掌握求解的方法是关键.

18、16、【分析】直接利用正弦的定义求解即可【详解】解:如下图,在中,故答案为:【点睛】本题考查的知识点是正弦的定义,熟记定义内容是解此题的关键17、2【分析】根据一元二次方程的解的定义,把x=2代入x2-3x+k=0得4-6+k=0,然后解关于k的方程即可【详解】把x=2代入x23x+k=0得46+k=0,解得k=2.故答案为2.【点睛】本题考查的知识点是一元二次方程的解,解题的关键是熟练的掌握一元二次方程的解.18、60【解析】试题分析:根据旋转图形的性质可得:PAP=BAC=60.考点:旋转图形的性质三、解答题(共66分)19、【分析】作DFl于F,CPDF于P,BGDF于G,CHBG于H判

19、断四边形PCHG是矩形, 求出DP,CH,再加上AB即可求出DF【详解】解:如图,作于,于,于,于则四边形是矩形,.连杆端点D离桌面l的高度是.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题20、(1)一次函数的解析式为,反比例函数的解析式为;(2)6【分析】(1)由点的坐标利用一次函数、反比例函数图象上点的坐标特征即可得出反比例函数解析式;(2)联立一次函数、反比例函数得方程,解方程组即可求出AB点坐标,求出直线与轴的交点坐标后,即可求出和,继而求出的面积【详解】解:(1)将代入解析式与得,一次函数的解析式为,反比例函数的解析式为; (2)解方程组

20、得或, 设直线与轴,轴交于,点,易得,即, 【点睛】本题考查了反比例函数与一次函数的交点问题、待定系数法求一次函数和反比例函数解析式以及三角形的面积,解题的关键是:根据点的坐标利用待定系数法求出函数解析式;利用分割图形求面积法求出的面积21、(1)30;(2);(3)【分析】(1)由题意根据全等三角形的性质以及运用等量代换得出,进而得出的面积即阴影部分的面积;(2)由题意把绕点旋转到处,使与重合,利用全等三角形的性质进行等量代换得出,进而进行分析即可;(3)根据题意延长AC到G,使CG=BE,并构造全等三角形,运用全等三角形的判定和性质进行分析即可 【详解】解:(1)绕点逆时针旋转一定的角度到

21、达,四边形是正方形,等量代换可知,阴影部分的面积即的面积为:.(2)如图,把绕点旋转到处,使与重合,可得.,即,、三点共线.又,四个角都为,四边形是正方形,易得.,即.(3)线段BE、CF、EF之间的数量关系为:EF=BE+CF.理由:如图,延长AC到G,使CG=BE,B+ACD=180,ACD+DCG=180,B=DCG,在DBE和DCG中,DBEDCG(SAS),DE=DG,BDE=CDG,BDC=120,EDF=60,BDE+CDF=60,CDG+CDF=60,EDF=GDF,在EDF和GDF中,EDFGDF(SAS),EF=GF,GF=CG+CF,GF=BE+CF,EF=BE+CF【点

22、睛】本题考查四边形的综合问题,根据题意熟练掌握全等三角形的判定与性质以及四边形的性质,综合运用数形结合思维分析是解题的关键.22、(1)y,(2)w,在这15天中,第9天销售额达到最大,最大销售额是1元,(3)第13天、第14天、第15天这3天,专柜处于亏损状态【分析】(1)用待定系数法可求与的函数关系式;(2)利用总销售额=销售单价销售量,分三种情况,找到(元)关于(天)的函数解析式,然后根据函数的性质即可找到最大值(3)先根据第(2)问的结论判断出在这三段内哪一段内会出现亏损,然后列出不等式求出x的范围,即可找到答案【详解】解:(1)当 时,设直线的表达式为 将 代入到表达式中得 解得 当

23、时,直线的表达式为 y,(2)由已知得:wpy当1x5时,wpy(x15)(20 x180)20 x2120 x270020(x3)22880,当x3时,w取最大值2880,当5x9时,w10(20 x180)200 x1800,x是整数,2000,当5x9时,w随x的增大而增大,当x9时,w有最大值为200918001,当9x15时,w10(60 x900)600 x9000,6000,w随x的增大而减小,又x9时,w600990001当9x15时,W的最大值小于1综合得:w,在这15天中,第9天销售额达到最大,最大销售额是1元(3)当时,当 时,y有最小值,最小值为 不会有亏损当时,当 时

24、,y有最小值,最小值为 不会有亏损当时, 解得 x为正整数 第13天、第14天、第15天这3天,专柜处于亏损状态【点睛】本题主要考查二次函数和一次函数的实际应用,掌握二次函数和一次函数的性质是解题的关键23、(1)ECOOAC;(2)OMON,理由见解析,EM的值为m+m或mm【分析】(1)结论:ECOOAC理由直角三角形斜边中线定理,三角形的中位线定理解决问题即可(2)只要证明COMAON(ASA),即可解决问题分两种情形:如图31中,当点N在CA的延长线上时,如图32中,当点N在线段AC上时,作OHAC于H分别求解即可解决问题【详解】解:(1)结论:ECOOAC理由:如图1中,连接OEBC

25、D90,BEED,BOOA,CEEDEBBD,COOAOB,OCAA,BEED,BOOA,OEAD,OEAD,CEEOEOCOCAECO,ECOOAC故答案为:OCEOAC(2)如图2中,OCOA,DADB,AOCAABD,COAADB,MONADB,AOCMON,COMAON,ECOOAC,MCONAO,OCOA,COMAON(ASA),OMON如图31中,当点N在CA的延长线上时,CAB30OAN+ANO,AON15,AONANO15,OAANm,OCMOAN,CMANm,在RtBCD中,BCm,CDB60,BDm,BEED,CEBDm,EMCM+CEm+m如图32中,当点N在线段AC上时

26、,作OHAC于HAON15,CAB30,ONH15+3045,OHHNm,AHm,CMANmm,ECm,EMECCMm(mm)mm,综上所述,满足条件的EM的值为m+m或mm【点睛】本题属于几何变换综合题,考查了直角三角形斜边中线定理、三角形中位线定理、全等三角形的判定和性质、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题24、(1)证明见解析;(2)证明见解析. 【分析】(1)连接OD,根据等腰三角形的性质结合角平分线的性质可得出CAD=ODA,利用“内错角相等,两直线平行”可得出AE/OD,结合切线的性质即可证出DEAE;(2)过点D作DMAB于点M,连接CD、DB,根据角平分线的性质可得出DE=DM,结合AD=AD、AED=AMD=90即可证出DAEDAM(SAS),根据全等三角形的性质可得出AE=AM,由EAD=MAD可得出,进而可得出CD=BD,结合DE=DM可证出RtDECRtDMB(HL),根据全等三角形的性质可得出CE=BM,结合AB=AM+BM即可证出AE+CE=AB【详解】连接OD,如图1所示,AD平分,是的切线,;过点D作于点M,连接CD、DB,如图2所示,平分,在和中,在和中,【点睛】本题考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论