河南省平顶山市宝丰县2022-2023学年数学九上期末达标测试试题含解析_第1页
河南省平顶山市宝丰县2022-2023学年数学九上期末达标测试试题含解析_第2页
河南省平顶山市宝丰县2022-2023学年数学九上期末达标测试试题含解析_第3页
河南省平顶山市宝丰县2022-2023学年数学九上期末达标测试试题含解析_第4页
河南省平顶山市宝丰县2022-2023学年数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每小题3分,共30分)1我县为积极响应创建“省级卫生城市”的号召,为打造“绿色乐至,健康乐至”是我们每个乐至人应尽的义务.某乡镇积极开展垃圾分类有效回收,据统计2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,设这两年该乡镇的垃圾有效回收平均增长率为x,则下列方程正确的是( ).A1.5(1+2x)2.8BCD+2下列说法中错误的是( )A成中心对称的两个图形全等B成中心对称的两个图形中,对称点的连线被对称轴平分C中心对称图形的对称中心是对称点连线的中心D中心对称图形绕对称中心旋转180后,都能与自身重合3如图,点在的边上,以原点

3、为位似中心,在第一象限内将缩小到原来的,得到,点在上的对应点的的坐标为( )ABCD4下列方程式属于一元二次方程的是( )ABCD5如图所示,在平面直角坐标系中,有两点A(4,2),B(3,0),以原点为位似中心,AB与AB的相似比为,得到线段AB.正确的画法是( )ABCD6已知x1,x2是关于x的方程x2ax2b0的两个实数根,且x1x22,x1x21,则ba的值是( )A14B14C4D17如图,圆锥的底面半径r为6cm,高h为8cm,则圆锥的侧面积为()A30cm2B48cm2C60cm2D80cm28如果2是方程x2-3x+k=0的一个根,则常数k的值为( )A2B1C-1D-29下

4、列图形中,既是轴对称图形又是中心对称图形的是( )ABCD10将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()Acm2Bcm2C cm2D()ncm2二、填空题(每小题3分,共24分)11一天早上,王霞从家出发步行上学,出发6分钟后王霞想起数学作业没有带,王霞立即打电话叫爸爸骑自行车把作业送来(接打电话和爸爸出门的时间忽略不计),同时王霞把速度降低到前面的一半.爸爸骑自行车追上王霞后立即掉头以原速赶往位于家的另一边的单位上班,王霞拿到作业后立即改为慢跑上学,慢跑的速度是最开始步行速度的2倍,最后王霞比爸爸

5、早10分钟到达目的地.如图反映了王霞与爸爸之间的距离(米)与王霞出发后时间(分钟)之间的关系,则王霞的家距离学校有_米.12小明练习射击,共射击次,其中有次击中靶子,由此可估计,小明射击一次击中靶子的概率约为_13如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于E则直线CD与O的位置关系是_ ,阴影部分面积为(结果保留) _14如图,RtABC中,ACB90,ACBC,若把RtABC绕边AB所在直线旋转一周,则所得几何体的表面积为_(结果保留)15抛物线的顶点为,已知一次函数的图象经过点,则这个一次函数图象与两坐标轴所围成的三角形面积为_16如图,一块飞镖游戏板由大小相等的小正

6、方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是_17如果ABCDEF,且ABC的三边长分别为4、5、6,DEF的最短边长为12,那么DEF的周长等于_18如图,已知点P是ABC的重心,过P作AB的平行线DE,分别交AC于点D,交BC于点E,作DF/BC,交AB于点F,若四边形BEDF的面积为4,则ABC的面积为_三、解答题(共66分)19(10分)某学校游戏节活动中,设计了一个有奖转盘游戏,如图,A转盘被分成三个面积相等的扇形,B转盘被分成四个面积相等的扇形,每一个扇形都标有相应的数字,先转动A转盘,记下指针所指区域内的数字,再转动B转盘,记下指针所指区域内的数字(当指针在边界线

7、上时,重新转动转盘,直到指针指向一个区域内为止)(1)请利用画树状图或列表的方法(只选其中一种),表示出转转盘可能出现的所有结果;(2)如果将两次转转盘指针所指区域的数据相乘,乘积是无理数时获得一等奖,那么获得一等奖的概率是多少?20(6分)如图,AC是O的直径,BC是O的弦,点P是O外一点,连接PB、AB,PBA=C,(1)求证:PB是O的切线; (2)连接OP,若OPBC,且OP=8,O的半径为2 ,求BC的长21(6分)已知:如图,在正方形ABCD中,F是AB上一点,延长CB到E,使BE=BF,连接CF并延长交AE于G(1)求证:ABECBF;(2)将ABE绕点A逆时针旋转90得到ADH

8、,请判断四边形AFCH是什么特殊四边形,并说明理由 22(8分)甲、乙两所医院分别有一男一女共4名医护人员支援湖北武汉抗击疫情(1)若从甲、乙两医院支援的医护人员中分别随机选1名,则所选的2名医护人员性别相同的概率是 ;(2)若从支援的4名医护人员中随机选2名,用列表或画树状图的方法求出这2名医护人员来自同一所医院的概率23(8分)如图l,在中,于点,是线段上的点(与,不重合),连结,(1)求证:;(2)如图2,若将绕点旋转,使边在的内部,延长交于点,交于点求证:;当为等腰直角三角形,且时,请求出的值24(8分)如图,在四边形中,已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经

9、过点(1)求点的坐标和反比例函数的解析式;(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?25(10分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60(1)求ABC的度数;(2)求证:AE是O的切线;(3)当BC=4时,求劣弧AC的长26(10分)如图,在平行四边形ABCD中,过点A作AEBC,垂足为E,连接DE,F为线段DE上一点,且AFE=B(1)求证:ADFDEC;(2)若AB=8,AD=6,AF=4,求AE的长参考答案一、选择题(每小题3分,共30分)1、B【分析】根据题意可得等量关系:2017年有效回收的垃圾的量(1+

10、增长率)2=2019年有效回收的垃圾的量,根据等量关系列出方程即可【详解】设这两年该乡镇的垃圾有效回收平均增长率为x,2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,1.5(1+x)2=2.8,故选:B.【点睛】此题考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,经过两次变化后的数量关系为a(1x)2=b2、B【解析】试题分析:在平面内,把一个图形绕着某个点旋转180,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称中心对称,中心对称图形的对称中心是对称点连线

11、的交点,根据中心对称图形的定义和性质可知A、C、D正确,B错误故选B考点:中心对称3、A【解析】根据位似的性质解答即可.【详解】解:点P(8,6)在ABC的边AC上,以原点O为位似中心,在第一象限内将ABC缩小到原来的,得到ABC,点P在AC上的对应点P的的坐标为:(4,3)故选A【点睛】此题主要考查了位似变换,正确得出位似比是解题关键如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,进而结合已知得出答案4、D【解析】根据一元二次方程的定义逐项进行判断即可.【详解】A、是一元三次方程,故不符合题意;B、是分式方程,故不符合题意;C、是二元二次方程,故不符合题

12、意;D、是一元二次方程,符合题意.故选:D.【点睛】本题考查一元二次方程的定义,熟练掌握定义是关键.5、D【分析】根据题意分两种情况画出满足题意的线段AB,即可做出判断【详解】解:画出图形,如图所示:故选D【点睛】此题考查作图-位似变换,解题关键是画位似图形的一般步骤为:确定位似中心,分别连接并延长位似中心和能代表原图的关键点;根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形6、A【解析】根据根与系数的关系和已知x1+x2和x1x2的值,可求a、b的值,再代入求值即可【详解】解:x1,x2是关于x的方程x2+ax2b=0的两实数根,x1+x2=a=2,x1x

13、2=2b=1,解得a=2,b=-12,ba=(-12)2=14故选A7、C【分析】首先利用勾股定理求出圆锥的母线长,再通过圆锥侧面积公式可以求得结果【详解】h8,r6,可设圆锥母线长为l,由勾股定理,l10,圆锥侧面展开图的面积为:S侧161060,所以圆锥的侧面积为60cm1故选:C【点睛】本题主要考查圆锥侧面积的计算公式,解题关键是利用底面半径及高求出母线长即可8、A【分析】把x=1代入已知方程列出关于k的新方程,通过解方程来求k的值【详解】解:1是一元二次方程x1-3x+k=0的一个根,11-31+k=0,解得,k=1故选:A【点睛】本题考查的是一元二次方程的根即方程的解的定义一元二次方

14、程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值即用这个数代替未知数所得式子仍然成立9、B【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】A是轴对称图形,不是中心对称图形,故本选项不符合题意;B是轴对称图形,也是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合10、B【分析】根据题意可得,阴影部分的面

15、积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为4,n个这样的正方形重叠部分(阴影部分)的面积和为(n-1)=cm1故选B【点睛】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积二、填空题(每小题3分,共24分)11、1750【分析】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,根据爸爸追上王霞的时间可以算出两者速度关系,然后利用学校和单位之间距离475

16、0建立方程求出a,即可算出家到学校的距离.【详解】设王霞出发时步行速度为a米/分钟,爸爸骑车速度为b米/分钟,由图像可知9分钟时爸爸追上王霞,则,整理得由图像可知24分钟时,爸爸到达单位,最后王霞比爸爸早10分钟到达目的地王霞在第14分钟到达学校,即拿到作业后用时14-9=5分钟到达学校爸爸骑车用时24-9=15分钟到达单位,单位与学校相距4750米,将代入可得,解得王霞的家与学校的距离为米故答案为:1750.【点睛】本题考查函数图像信息问题,解题的关键是读懂图像中数据的含义,求出王霞的速度.12、0.9【分析】根据频率=频数数据总数计算即可得答案【详解】共射击300次,其中有270次击中靶子

17、,射中靶子的频率为=0.9,小明射击一次击中靶子的概率约为0.9,故答案为:0.9【点睛】本题考查利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比13、相切 6- 【详解】正方形ABCD是正方形,则C=90,D与O的位置关系是相切正方形的对角线相等且相互垂直平分,CE=DE=BE,CD=4,BD=4,CE=DE=BE=2梯形OEDC的面积=(2+4)22=6,扇形OEC的面积=,阴影部分的面积=6-14、【分析】过点C作CDAB于点D,在RtABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可【详解】过点C作CDAB于点D,RtA

18、BC中,ACB=90,AC=BC,AB=AC=4,CD=2,以CD为半径的圆的周长是:4故直线旋转一周则所得的几何体得表面积是:24=故答案为【点睛】本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键15、1【分析】易得顶点(2,-6),根据待定系数法,求出一次函数解析式,进而求出直线与坐标轴的交点,根据三角形的面积公式,即可求解.【详解】抛物线,顶点(2,-6),一次函数的图象经过点,解得:k=,一次函数解析式为:,直线与坐标轴的交点坐标分别是:(0,3),(,0),一次函数图象与两坐标轴所围成的三角形面积=.故答案是:1.【点睛】本题主要考查二次函数和一次函数图象与平面几何的

19、综合,掌握一次函数图象与坐标轴的交点坐标的求法,是解题的关键.16、【分析】求出黑色区域面积与正方形总面积之比即可得答案.【详解】图中有9个小正方形,其中黑色区域一共有3个小正方形,所以随意投掷一个飞镖,击中黑色区域的概率是,故答案为【点睛】本题考查了几何概率,熟练掌握概率的计算公式是解题的关键.注意面积之比几何概率17、1【分析】根据题意求出ABC的周长,根据相似三角形的性质列式计算即可【详解】解:设DEF的周长别为x,ABC的三边长分别为4、5、6,ABC的周长45615,ABCDEF,解得,x1,故答案为1【点睛】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解题的关键

20、18、9【分析】连接CP交AB于点H,利用点P是重心得到=,得出SDEC=4SAFD,再由DE/BF证出,由此得到SDEC=SABC,继而得出S四边形BEDF=SABC,从而求出ABC的面积.【详解】如图,连接CP交AB于点H,点P是ABC的重心,,DF/BE,AFDDEC,SDEC=4SAFD,DE/BF,DECABC,SABC=SDEC,S四边形BEDF=SABC,四边形BEDF的面积为4,SABC=9故答案为:9.【点睛】此题考察相似三角形的判定及性质,做题中首先明确重心的意义,连接CP交AB于点H是解题的关键,由此得到边的比例关系,再利用相似三角形的性质:面积的比等于相似比的平方推导出

21、几部分图形的面积之间的关系,得到三角形ABC的面积.三、解答题(共66分)19、(1)见解析;(2)【分析】(1)列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;本题用列表法得出所有等可能的情况,进而可得转转盘可能出现的所有结果;(2)无理数是无限不循环小数,找出乘积为无理数的情况数,再除以所有等可能出现的结果数,即可求出一等奖的概率【详解】(1)由题意列表如下, 由列表得知:当A转盘出现0,1,-1时,B转盘分别可能有4种等可能情况,所以共有43=12种等可能情况即(0,)、(0,15)、(0,-3)、(0,)、(1,)、(1,15)、(1,-3)、(1,)、(-1,)、(

22、-1,15)、(-1,-3)、(-1,)(2)无理数是无限不循环小数,由列表得知:乘积是无理数的情况有2种,即(1,)、(-1,)乘积分别是,P(乘积为无理数)=即P(获得一等奖)=考点:用列表法或树状图法求随机事件的概率20、(1)证明见解析;(1)BC=1.【解析】试题分析:(1)连接OB,由圆周角定理得出ABC=90,得出C+BAC=90,再由OA=OB,得出BAC=OBA,证出PBA+OBA=90,即可得出结论;(1)证明ABCPBO,得出对应边成比例,即可求出BC的长试题解析:(1)证明:连接OB,如图所示:AC是O的直径,ABC=90,C+BAC=90,OA=OB,BAC=OBA,

23、PBA=C,PBA+OBA=90,即PBOB,PB是O的切线;(1)解:O的半径为1,OB=1,AC=4,OPBC,C=BOP,又ABC=PBO=90,ABCPBO,即,BC=1考点:切线的判定21、 (1) 证明见解析;(2) 证明见解析.【解析】试题分析:(1)由于四边形ABCD是正方形,所以AB=CB=DC,因为ABCD,CBA=ABE,从而得证(2)根据旋转的性质可知ABEADH,从而可证AF=CH,然后利用ABCD即可知四边形AFCH是平行四边形.试题解析:(1)证明: ,AB/CD 在ABE和CBF中 ABECBF(SAS) (2)答:四边形AFCH是平行四边形理由:ABE绕点A逆

24、时针旋转90得到ADH ABEADH BE=DH 又BE=BF(已知) BF=DH(等量代换) 又AB=CD(由(1)已证) AB-BF=CD-DH 即AF=CH又AB/CD 即AF/CH 四边形AFCH是平行四边形 22、(1);(2)【分析】(1)根据甲、乙两所医院分别有一男一女,列出树状图,得出所有情况,再根据概率公式即可得出答案;(2)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案【详解】解:(1)根据题意画图如下:共有4种情况,其中所选的2名教师性别相同的有2种,则所选的2名教师性别相同的概率是:;故答案为:.(2)将甲、乙两医院的医生分别记为男1、女1、男2、女2

25、,画树形图得:所以共有12种等可能的结果,满足要求的有4种P(2名医生来自同一所医院的概率) 【点睛】本题考查列表法和树状图法,注意结合题意中“写出所有可能的结果”的要求,使用列举法,注意按一定的顺序列举,做到不重不漏23、(1)见解析;(2)见解析;【分析】(1)通过证明EABFAB,即可得到BE=BF;(2)首先证明AEBAFC,由相似三角形的性质可得:EBA=FCA,进而可证明AGCKGB;根据题意,可分类讨论求值即可【详解】(1)AB=AC,AOBC,OAC=OAB=45,EAB=EAF-BAF=45,EAB=BAF=45,在EAB和FAB中,EABFAB(SAS),BE=BF;(2)

26、BAC=90,EAF=90,EAB+BAF=BAF+FAC=90,EAB=FAC,在AEB和AFC中,AEBAFC(SAS),EBA=FCA,又KGB=AGC,AGCKGB;当EBF=90时,EF=BF, FEB=EBF=90(不符合题意),当BEF=90,且EF=BF时, FEB=EBF=90(不符合题意),当EFB=90,且EF=BF时,如下图,FEB=FBE=45,AFE=AEF=45,AEB=AEF+FEB=45+ 45=90,不妨设,则BF= EF=,BE=,在RtABE中,AEB =90,BE,综上,【点睛】本题考查了全等三角形的判定和性质、相似三角形的判定和性质、等腰直角三角形的性质,题目的综合性很强,最后一问要注意分类讨论,以防遗漏24、(1);(1)点恰好落在双曲线上【分析】(1)过C作CEAB,由题意得到四边形ABCD为等腰梯形,进而得到三角形AOD与三角形BEC全等,得到CEOD3,OABE1,可求出OE的长,确定出C坐标,代入反比例解析式求出k的值即可;(1)由平移规律确定出B的坐标,代入反比例解析式检验即可【详解】解:(1)过C作C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论