版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,在ABC中,C90,cosA,AB10,AC的长是()A3B6C9D122如果一个扇形的弧长是,半径是6,那么此扇形的圆心角为()A40B45C60D803关于x的一元二次方程x2+kx20(k为实数)根的情况是()A有两个不相等的实数
2、根B有两个相等的实数根C没有实数根D不能确定4已知关于x的一元二次方程有两个实数根,则k的取值范围是( )AB且C且D5如图,是的中位线,则的值为( )ABCD6如图,在中,点O是AB的三等分点,半圆O与AC相切,M,N分别是BC与半圆弧上的动点,则MN的最小值和最大值之和是( )A5B6C7D87一元二次方程x28x1=0配方后为( )A(x4)2=17B(x4)2=15C(x4)2=17D(x4)2=17或(x4)2=178已知点A(3,a),B(2,b),C(1,c)均在抛物线y3(x+2)2+k上,则a,b,c的大小关系是( )AcabBacbCbacDbca9若一个三角形的两条边的长
3、度分别为2和4,且第三条边的长度是方程的解,则它的周长是()A10B8或10C8D610如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是ABCD二、填空题(每小题3分,共24分)11如图,将绕点顺时针旋转得到,点的对应点是点,直线与直线所夹的锐角是_.12一个口袋中装有10个红球和若干个黄球在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀不断重复上述过程20次,得到红球数与10的比值的平均数为0.1根据上述数据,估计口袋中大约有_
4、个黄球13某养鱼专业户为了估计鱼塘中鱼的总条数,他先从鱼塘中捞出100条,将每条鱼作了记号后放回水中,当它们完全混合于鱼群后,再从鱼塘中捞出100条鱼,发现其中带记号的鱼有10条,估计该鱼塘里约有_条鱼.14如图,点G为ABC的重心,GEAC,若DE2,则DC_15我市某公司前年缴税40万元,今年缴税48.4万元该公司缴税的年平均增长率为 16在中,则C的度数为_17已知点与点,两点都在反比例函数的图象上,且,那么_. (填“”,“”,“”)18如果点A(1,4)、B(m,4)在抛物线ya(x1)2+h上,那么m的值为_三、解答题(共66分)19(10分)如图是由6个形状、大小完全相同的小矩形
5、组成的,小矩形的顶点称为格点已知小矩形较短边长为1,的顶点都在格点上(1)用无刻度的直尺作图:找出格点,连接,使;(2)在(1)的条件下,连接,求的值20(6分)如图,直线yx+2与抛物线yax2+bx+6相交于A(,)和B(4,m),直线AB交x轴于点E,点P是线段AB上异于A、B的动点,过点P作PCx轴于点D,交抛物线于点C(1)求抛物线的解析式.(2)连结AC、BC,是否存在一点P,使ABC的面积等于14?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)若PAC与PDE相似,求点P的坐标.21(6分)已知函数解析式为y=(m-2) (1)若函数为正比例函数,试说明函数y随x增大
6、而减小(2)若函数为二次函数,写出函数解析式,并写出开口方向(3)若函数为反比例函数,写出函数解析式,并说明函数在第几象限22(8分)如图,圆内接四边形ABDC,AB是O的直径,ODBC于E(1)求证:BCD=CBD;(2)若BE=4,AC=6,求DE的长23(8分)计算:24(8分)图是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动(1)随机掷一次骰子,
7、则棋子跳动到点C处的概率是 (2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C处的概率25(10分)北京市第十五届人大常委会第十六次会议表决通过关于修改的决定,规定将生活垃圾分为厨余垃圾、可回收物、有害垃圾、其它垃圾四大基本品类,修改后的条例将于2020年5月1日实施 .某小区决定在2020年1月到3月期间在小区内设置四种垃圾分类厢:厨余垃圾、可回收物、有害垃圾、其它垃圾,分别记为A、B、C、D,进行垃圾分类试投放,以增强居民垃圾分类意识.(1)小明家按要求将自家的生活垃圾分成了四类,小明从分好类的垃圾中随机拿了一袋,并随机投入一个垃圾箱中,请用画树状图的方法求垃圾投放正确的概
8、率;(2)为调查居民生活垃圾分类投放情况,现随机抽取了该小区四类垃圾箱中共1 000千克生活垃圾,数据统计如下(单位:千克):ABCD厨余垃圾4001004060可回收物251402015有害垃圾5206015其它垃圾25152040求“厨余垃圾”投放正确的概率.26(10分)如图,C地在B地的正东方向,因有大山阻隔,由B地到C地需绕行A地,已知A地位于B地北偏东53方向,距离B地516千米,C地位于A地南偏东45方向现打算打通穿山隧道,建成两地直达高铁,求建成高铁后从B地前往C地的路程(结果精确到1千米)(参考数据:sin53,cos53,tan53)参考答案一、选择题(每小题3分,共30分
9、)1、B【分析】根据角的余弦值与三角形边的关系即可求解【详解】解:C90,cosA,AB10,AC1故选:B【点睛】本题主要考查解直角三角形,理解余弦的定义,得到cosA是解题的关键2、A【解析】试题分析:弧长,圆心角故选A3、A【分析】利用一元二次方程的根的判别式即可求【详解】由根的判别式得,=b2-4ac=k2+80故有两个不相等的实数根故选A【点睛】此题主要考查一元二次方程的根的判别式,利用一元二次方程根的判别式(=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:当0时,方程有两个不相等的实数根;当=0 时,方程有两个相等的实数根;当0 时,方程无实数根,上
10、述结论反过来也成立4、C【分析】若一元二次方程有两个实数根,则根的判别式=b24ac1,建立关于k的不等式,求出k的取值范围还要注意二次项系数不为1【详解】解:一元二次方程有两个实数根,解得:,k的取值范围是且;故选:C【点睛】本题考查了一元二次方程根的判别式的应用切记不要忽略一元二次方程二次项系数不为零这一隐含条件5、B【分析】由中位线的性质得到DEAC,DE=AC,可知BDEBCA,再根据相似三角形面积比等于相似比的平方可得,从而得出的值.【详解】DE是ABC的中位线,DEAC,DE=ACBDEBCA故选B.【点睛】本题考查了中位线的性质,以及相似三角形的判定与性质,解题的关键是掌握相似三
11、角形的面积比等于相似比的平方.6、B【解析】设O与AC相切于点D,连接OD,作垂足为P交O于F,此时垂线段OP最短,PF最小值为,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,根据图形与圆的性质即可求解.【详解】如图,设O与AC相切于点D,连接OD,作垂足为P交O于F,此时垂线段OP最短,PF最小值为,点O是AB的三等分点,O与AC相切于点D,MN最小值为,如图,当N在AB边上时,M与B重合时,MN经过圆心,经过圆心的弦最长,MN最大值,,MN长的最大值与最小值的和是1故选B【点睛】此题主要考查圆与三角形的性质,解题的关键是熟知圆的性质及直角三角形的性质.7、A【解析】x28
12、x1=0,移项,得x28x=1,配方,得x28x+42=1+42,即(x4)2=17.故选A.点睛:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.8、C【分析】通过确定A、B、C三个点和函数对称轴的距离,确定对应y轴的大小【详解】解:函数的对称轴为:x2,a30,故开口向上,x1比x3离对称轴远,故c最大,b为函数最小值,故选:C【点睛】本题主要考查了二次函数的性质,能根据题意,巧妙地利用性质进行解题是解此题的关键9、A【分析】本题先利用因式分解法解方程,然后利用三角形三边之间的数量关系确定第三边的长,最后求出周长即可.
13、【详解】解:,;由三角形的三边关系可得:腰长是4,底边是2,所以周长是:2+4+4=10.故选A.【点睛】本题考察了一元二次方程的解法与三角形三边之间的数量关系.10、C【分析】如图作,FNAD,交AB于N,交BE于M设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FNAD,交AB于N,交BE于M四边形ABCD是正方形,ABCD,FNAD,四边形ANFD是平行四边形,D=90,四边形ANFD是矩形,AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,AN=BN,MNAE,BM=ME,MN=a,FM=a,AEFM,故选C【点睛
14、】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型二、填空题(每小题3分,共24分)11、【分析】延长DE交AC于点O,延长BC交DE的延长线于点F,然后根据旋转的性质分别求出EAC=55,AED=ACB,再根据对顶角相等,可得出DFB=EAC=55.【详解】解:延长DE交AC于点O,延长BC交DE的延长线于点F由题意可得:EAC=55,AED=ACBAEF=ACF又AOE=FOCDFB=EAC=55故答案为:55【点睛】本题考查旋转的性质,掌握旋转图形对应角相等是本题的解题关键.1
15、2、2【详解】解:小明通过多次摸球实验后发现其中摸到红色球的频率稳定在0.1,设黄球有x个,0.1(x+10)=10,解得x=2答:口袋中黄色球的个数很可能是2个13、1000【解析】试题考查知识点:统计初步知识抽样调查思路分析:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的十分之一具体解答过程:第二次捞出来的100条鱼中有10条带记号的,说明带记号的鱼约占整个池塘鱼的总数的比例为:先从鱼塘中捞出后作完记号又放回水中的鱼有100条该鱼塘里总条数约为:(条)试题点评:14、1【分析】根据重心的性质可得AG:DG2:1,然后根据平行线分线段成比例定理可得2,从而求
16、出CE,即可求出结论【详解】点G为ABC的重心,AG:DG2:1,GEAC,2,CE2DE224,CDDE+CE2+41故答案为:1【点睛】此题考查的是重心的性质和平行线分线段成比例定理,掌握重心的性质和平行线分线段成比例定理是解决此题的关键15、10%【解析】设该公司缴税的年平均增长率是x,则去年缴税40(1x) 万元, 今年缴税40(1x) (1x) 40(1x)2万元据此列出方程:40(1x)2=48.4,解得x=0.1或x=2.1(舍去)该公司缴税的年平均增长率为10%16、【分析】先根据平方、绝对值的非负性求得、,再利用锐角三角函数确定、的度数,最后根据直角三角形内角和求得【详解】解
17、:故答案是:【点睛】本题考查了平方、绝对值的非负性,锐角三角函数以及三角形内角和,熟悉各知识点是解题的关键17、【分析】根据反比例函数图象增减性解答即可.【详解】反比例函数的图象在每一个象限内y随x的增大而增大图象上点与点 ,且0故本题答案为:.【点睛】本题考查了反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键.18、1【分析】根据函数值相等两点关于对称轴对称,可得答案【详解】由点A(1,4)、B(m,4)在抛物线y=a(x1)2+h上,得:(1,4)与(m,4)关于对称轴x=1对称,m1=1(1),解得:m=1故答案为1【点睛】本题考查了二次函数图象上点的坐标特征,利用函数
18、值相等两点关于对称轴对称得出m1=1(1)是解题的关键三、解答题(共66分)19、(1)答案见解析;(2)【分析】(1)把一条直尺边与直线AC重合,沿着直线AC移动直尺,直到格点在另一直角边上,即为找出格点,连接;(2)连接BD,根据勾股定理分别求出BD和AB的长度,从而求的值【详解】(1)如图,(2)如图,连接,连接BD , , , 易知 , , , , , 【点睛】本题考查了几何作图以及三角函数的应用,掌握勾股定理求出对应边长代入三角函数是解题的关键20、 (1)y2x28x+6;(2)不存在一点P,使ABC的面积等于14;(3)点P的坐标为(3,5)或(,).【分析】(1)由B(4,m)
19、在直线yx+2上,可求得m的值,已知抛物线图象上的A、B两点坐标,可将其代入抛物线的解析式中,通过待定系数法即可求得解析式;(2)设出P点横坐标,根据直线AB和抛物线的解析式表示出P、C的纵坐标,进而得到关于PC的长度与P点横坐标的函数关系式,根据三角形面积公式列出方程,即可解答;(3)根据PAC与PDE相似,可得PAC为直角三角形,根据直角顶点的不同,有3种情形,分类讨论,即可分别求解.【详解】(1)B(4,m)在直线yx+2上,m4+26,B(4,6),A(,),B(4,6)在抛物线yax2+bx+6上, ,解得,抛物线的解析式为y2x28x+6;(2)设动点P的坐标为(n,n+2),则C
20、点的坐标为(n,2n28n+6),点P是线段AB上异于A、B的动点,PC(n+2)(2n28n+6)2n2+9n4,假设ABC的面积等于14,则PC(xBxA)14,即:2n29n+120,(-9)242120,一元二次方程无实数解,假设不成立,即:不存在一点P,使ABC的面积等于14;(3)PCx轴,PDE90,PAC与PDE相似,PAC也是直角三角形,当P为直角顶点,则APC90由题意易知,PCy轴,APC45,因此这种情形不存在;若点A为直角顶点,则PAC90.如图1,过点A(,)作ANx轴于点N,则ON,AN.过点A作AM直线AB,交x轴于点M,则由题意易知,AMN为等腰直角三角形,M
21、NAN,OMON+MN+3,M(3,0).设直线AM的解析式为:ykx+b,则: ,解得 ,直线AM的解析式为:yx+3 又抛物线的解析式为:y2x28x+6 联立式, 解得: 或 (与点A重合,舍去),C(3,0),即点C、M点重合.当x3时,yx+25,P1(3,5);若点C为直角顶点,则ACP90.y2x28x+62(x2)22,抛物线的对称轴为直线x2.如图2,作点A(,)关于对称轴x2的对称点C, 则点C在抛物线上,且C(,).当x时,yx+2.P2(,).点P1(3,5)、P2(,)均在线段AB上,综上所述,若PAC与PDE相似,点P的坐标为(3,5)或(,).【点睛】本题主要考查
22、二次函数的图象和性质与三角形的综合问题,掌握二次函数的待定系数法,平面直角坐标系中,三角形的面积公式,相似三角形的判定和性质定理,以及分类讨论和数形结合思想,是解题的关键.21、(1)详见解析;(2)y=-4x2,开口向下;(3)y=-x-1或y=-3x-1,函数在二四象限【分析】(1)根据正比例函数的定义求出m,再确定m-2的正负,即可确定增减性;(2)根据二次函数的定义求出m,再确定m-2的值,即可确定函数解析式和开口方向;(3)由题意可得-2=-1,求出m即可确定函数解析式和图像所在象限【详解】解:(1)若为正比例函数则 -2=1,m=,m-20,函数y随x增大而减小;(2) 若函数为二
23、次函数,-2=2且m-20,m=-2,函数解析式为y=-4x2,开口向下(3)若函数为反比例函数,-2=-1, m=1, m-20,解析式为y=-x-1或y=-3x-1,函数在二四象限【点睛】本题考查了正比例、二次函数、反比例函数的定义,理解各种函数的定义及其内涵是解答本题的关键22、 (1)详见解析;(1)1.【分析】(1)根据ODBC于E可知,所以BD=CD,故可得出结论;(1)先根据圆周角定理得出ACB=90,再ODBC于E可知ODAC,由于点O是AB的中点,所以OE是ABC的中位线,故,在RtOBE中根据勾股定理可求出OB的长,故可得出DE的长,进而得出结论【详解】解:(1)ODBC于E,BD=CD,BCD=CBD;(1)AB是O的直径,ACB=90,ODBC于E,ODAC,点O是AB的中点,OE是ABC的中位线,在RtOBE中,BE=4,OE=3,即OD=OB=5,DE=OD-OE=5-3=123、1【分析】先计算特殊的三角函数值和去绝对值,再从左至右计算即可.【详解】解:原式=【点睛】本题考查的是实数与特殊角的三角函数值的混合运算,能够熟知特殊角的三角函数值是解题的关键.24、(1);(2)棋子最终跳动到点C处的概率为【解析】(1)和为8时,可以到达点C,根据概率公式计算
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年Excel高效办公技巧与策略
- 2024年未来教室:《拿来主义》教学课件的智能化实践
- 2024年人力资源管理教案升级指南
- 《岛》读后感:2024年社会形态的演变
- 2024年PCCAD软件升级培训-赋能创造力拓展想象边界
- 《在柏林》教案设计理念-面向2024年中学课堂
- 河北省秦皇岛市(2024年-2025年小学五年级语文)人教版综合练习(上学期)试卷及答案
- 科目二五项记忆口诀表-驾考实操
- 创意与学术的碰撞:《孔乙己》探究
- 2024年春季服装构思原理探索
- 眼视光学:专业职业生涯规划
- 预防母婴传播培训
- 房屋改造方案可行性分析报告
- 2024年电子维修培训资料
- 水利工程测量的内容和任务
- 项目风险识别与控制-年度总结
- 《决策心理学》课件
- 装饰装修工程施工流程方案
- 2023-2024学年深圳市初三中考适应性考试英语试题(含答案)
- 《漏电保护器》课件
- 岩质高陡边坡稳定性分析评价
评论
0/150
提交评论