河北省保定市雄县2022年九年级数学第一学期期末统考模拟试题含解析_第1页
河北省保定市雄县2022年九年级数学第一学期期末统考模拟试题含解析_第2页
河北省保定市雄县2022年九年级数学第一学期期末统考模拟试题含解析_第3页
河北省保定市雄县2022年九年级数学第一学期期末统考模拟试题含解析_第4页
河北省保定市雄县2022年九年级数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()ABCD2下列物体的光线所形成的投影是平行投影的是( )A台灯B手电筒C太阳D路灯3直角三角形两直角边之和为定值,其面积S与一直角边x之间的函数关系大致图象是下列中的()ABCD4矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()ABCD5如图,在菱形ABCD中,对角线AC、BD相交于点O,E为AB的中点且CD4,则OE等于()A1B2C3D46如图,直线与双曲线交于、两点,则当时,x的取值范围是

3、A或B或C或D7要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为( )A3cmB4cmC4.5cmD5cm8一元二次方程x29的根是()A3B3C9D99如图,在ABC中,B=80,C=40,直线l平行于BC现将直线l绕点A逆时针旋转,所得直线分别交边AB和AC于点M、N,若AMN与ABC相似,则旋转角为()A20B40C60D8010已知二次函数(为常数),当时,函数值的最小值为,则的值为( )ABCD11如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知SAEF=4,则下列结论:

4、;SBCE=36;SABE=12;AEFACD,其中一定正确的是()ABCD12如图,二次函数y=ax1+bx+c的图象与x轴交于点A(1,0),B(3,0)下列结论:1ab=0;(a+c)1b1;当1x3时,y0;当a=1时,将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x1)11其中正确的是()ABCD二、填空题(每题4分,共24分)13如图,在ABC中,DEBC,AE:EC=2:3,DE=4,则BC=_14已知直线y=kx(k0)经过点(12,5),将直线向上平移m(m0)个单位,若平移后得到的直线与半径为6的O相交(点O为坐标原点),则m的取值范围为_15若是一元二次

5、方程的两个实数根,则_16布袋中装有3个红球和4个白球,它们除颜色外其余都相同,如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是_17三角形的两边长分别为3和6,第三边的长是方程x26x+80的解,则此三角形的周长是_18反比例函数的图象在每一象限内,y随着x的增大而增大,则k的取值范围是_.三、解答题(共78分)19(8分)如图,一次函数y=x+4的图象与反比例函数y=(k为常数,且k0)的图象交于A(1,a),B(3,b)两点(1)求反比例函数的表达式(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标(3)求PAB的面积20(8分)定义:二元一次不等式是指

6、含有两个未知数(即二元),并且未知数的次数是1次(即一次)的不等式;满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集如:x+y3是二元一次不等式,(1,4)是该不等式的解有序实数对可以看成直角坐标平面内点的坐标于是二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合(1)已知A(,1),B (1,1),C (2,1),D(1,1)四个点,请在直角坐标系中标出这四个点,这四个点中是xy20的解的点是 (2)设的解集在坐标系内所对应的点形成的图形为G求G的面积;P(x,y)为G内(含边界)的一点,求3x+2

7、y的取值范围;(3)设的解集围成的图形为M,直接写出抛物线yx2+2mx+3m2m1与图形M有交点时m的取值范围21(8分)如图,以AB边为直径的O经过点P,C是O上一点,连结PC交AB于点E,且ACP=60,PA=PD(1)试判断PD与O的位置关系,并说明理由;(2)若点C是弧AB的中点,已知AB=4,求CECP的值22(10分)如图,四边形OABC为矩形,OA=4,OC=5,正比例函数y=2x的图像交AB于点D,连接DC,动点Q从D点出发沿DC向终点C运动,动点P从C点出发沿CO向终点O运动两点同时出发,速度均为每秒1个单位,设从出发起运动了t s(1)求点D的坐标;(2)若PQOD,求此

8、时t的值?(3)是否存在时刻某个t,使SDOP=SPCQ?若存在,请求出t的值,若不存在,请说明理由;(4)当t为何值时,DPQ是以DQ为腰的等腰三角形?23(10分)已知:如图,在中,是边上的高,且,求的长24(10分)如图,抛物线yax2+x+c(a0)与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知点A的坐标为(1,0),点C的坐标为(0,2)(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点

9、E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标25(12分)解方程:(x2)(x1)3x626某班“数学兴趣小组”对函数的图像和性质进行了探究,探究过程如下,请补充完整(1)自变量的取值范围是全体实数,与的几组对应值列表如下:其中,_(2)根据上表数据,在如图所示的平面直角坐标系中描点,并画出了函数图像的一部分,请画出该图像的另一部分;(3)观察函数图像,写出两条函数的性质;(4)进一步探究函数图像发现:方程有_个实数根;函数图像与直线有_个交点,所以对应方程有_个实数根;关于的方程有个实数根,的取值范围是_参考答案一、选择题(每题4分,共48分)1

10、、B【解析】根据题中给出的函数图像结合一次函数性质得出a0,b0,再由反比例函数图像性质得出c0,从而可判断二次函数图像开口向下,对称轴:0,即在y轴的右边,与y轴负半轴相交,从而可得答案.【详解】解:一次函数y=ax+b图像过一、二、四, a0,b0, 又反比例 函数y=图像经过二、四象限, c0, 二次函数对称轴:0, 二次函数y=ax2+bx+c图像开口向下,对称轴在y轴的右边,与y轴负半轴相交,故答案为B.【点睛】本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键2、C【解析】太

11、阳相对地球较远且大,其发出的光线可认为是平行光线.【详解】台灯、手电筒、路灯发出的光线是由点光源发出的光线,所形成的投影是中心投影;太阳相对地球较远且大,其发出的光线可认为是平行光线.故选C【点睛】本题主要考查了中心投影、平行投影的概念.3、A【解析】设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式即可得到关系式,观察形式即可解答.【详解】解:设直角三角形两直角边之和为a,其中一直角边为x,则另一直角边为(a-x).根据三角形面积公式则有:y = 12ax-12ax2,以上是二次函数的表达式,图象是一条抛物线,所以A选项是正确的.【点睛】考查了现实中

12、的二次函数问题,考查了学生的分析、 解决实际问题的能力.4、C【解析】由题意得函数关系式为,所以该函数为反比例函数B、C选项为反比例函数的图象,再依据其自变量的取值范围为x0确定选项为C5、B【分析】利用菱形的性质以及直角三角形斜边上的中线等于斜边的一半进而得出答案【详解】四边形ABCD是菱形,ABCD4,ACBD,又点E是边AB的中点,OEAB1故选:B【点睛】此题主要考查了菱形的性质以及直角三角形斜边上的中线等于斜边的一半,得出OE=AB是解题关键6、C【解析】试题解析:根据图象可得当时,x的取值范围是:x6或0 x2.故选C.7、C【解析】根据相似三角形三边对应成比例进行求解即可得.【详

13、解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.8、B【解析】两边直接开平方得:,进而可得答案【详解】解:,两边直接开平方得:,则,故选:B【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题一般要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成的形式,利用数的开方直接求解9、B【解析】因为旋转后得到AMN与ABC相似,则AMN=C=40,因为旋转前AMN=80,所以旋转角度为40,故选B.10、B【分析】函数配方后得,抛物线开口向上,在时,取最小值为

14、-3,列方程求解可得【详解】, 抛物线开口向上,且对称轴为,在时,有最小值-3,即:,解得,故选:B【点睛】本题考查了二次函数的最值,熟练掌握二次函数的图象及增减性是解题的关键11、D【详解】在ABCD中,AO=AC,点E是OA的中点,AE=CE,ADBC,AFECBE,=,AD=BC,AF=AD,;故正确;SAEF=4, =()2=,SBCE=36;故正确; =,=,SABE=12,故正确;BF不平行于CD,AEF与ADC只有一个角相等,AEF与ACD不一定相似,故错误,故选D12、D【解析】分析:根据二次函数图象与系数之间的关系即可求出答案详解:图象与x轴交于点A(1,0),B(3,0),

15、二次函数的图象的对称轴为x=1,=1,1a+b=0,故错误;令x=1,y=ab+c=0,a+c=b,(a+c)1=b1,故错误;由图可知:当1x3时,y0,故正确;当a=1时,y=(x+1)(x3)=(x1)14将抛物线先向上平移1个单位,再向右平移1个单位,得到抛物线y=(x11)14+1=(x1)11,故正确;故选:D点睛:本题考查二次函数图象的性质,解题的关键是熟知二次函数的图象与系数之间的关系,本题属于中等题型二、填空题(每题4分,共24分)13、1【分析】根据DEBC,得到ADEABC,得到,即可求BC的长【详解】解:AE:EC=2:3,AE:AC=2:5,DEBC,ADEABC,D

16、E=4,BC=1故答案为:1【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键14、0m132【解析】利用待定系数法得出直线解析式,再得出平移后得到的直线,求与坐标轴交点的坐标,转化为直角三角形中的问题,再由直线与圆的位置关系的判定解答【详解】把点(12,5)代入直线y=kx得,5=12k,k=512;由y=512x平移m(m0)个单位后得到的直线l所对应的函数关系式为y=512x+m(m0),设直线l与x轴、y轴分别交于点A、B,(如图所示)当x=0时,y=m;当y=0时,x=125m,A(125m,0),B(0,m),即OA=125m,OB=m,在RtOA

17、B中,AB=OA2+OB2=125m2+m2=135m,过点O作ODAB于D,SABO=12ODAB=12OAOB,12OD135m=12125mm,m0,解得OD=1213m,由直线与圆的位置关系可知1213m 6,解得m132,故答案为0m132.【点睛】本题考查了直线的平移、直线与圆的位置关系等,能用含m的式子表示出原点到平移后的直线的距离是解题的关键.本题有一定的难度,利用数形结合思想进行解答比较直观明了.15、1【分析】利用一元二次方程根与系数的关系求出,即可求得答案【详解】是一元二次方程的两个实数根,故答案为:1.【点睛】本题主要考查了一元二次方程根与系数的关系,方程的两个根为,则

18、,.16、【分析】由题意根据概率公式,求摸到红球的概率,即用红球除以小球总个数即可得出得到红球的概率【详解】解:一个布袋里装有3个红球和4个白球,共7个球,摸出一个球摸到红球的概率为:,故答案为:.【点睛】本题主要考查概率公式的应用,由已知求出小球总个数再利用概率公式求出是解决问题的关键17、1【分析】先求出方程的两根,然后根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可【详解】解:x26x+80,(x2)(x4)0,x20,x40,x12,x24,当x2时,2+36,不符合三角形的三边关系定理,所以x2舍去,当x4时,符合三角形的三边关系定理,三角形的周长是3+6+41,故答案为

19、:1【点睛】本题考查了因式分解法解一元二次方程以及三角形的三边关系,不能盲目地将三边长相加起来,而应养成检验三边长能否成三角形的好习惯,熟练掌握一元二次方程的解法是解法本题的关键18、【分析】利用反比例函数图象的性质即可得.【详解】由反比例函数图象的性质得:解得:.【点睛】本题考查了反比例函数图象的性质,对于反比例函数有:(1)当时,函数图象位于第一、三象限,且在每一象限内,y随x的增大而减小;(2)当时,函数图象位于第二、四象限,且在每一象限内,y随x的增大而增大.三、解答题(共78分)19、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)SPAB= 1.1 【解析】(1)把点

20、A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由SPAB=SABDSPBD即可求出PAB的面积.解:(1)把点A(1,a)代入一次函数y=x+4,得a=1+4,解得a=3,A(1,3),点A(1,3)代入反比例函数y=,得k=3,反比例函数的表达式y=,(2)把B(3,b)代入y=得,b=1点B坐标(3,1);作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+

21、PB的值最小,D(3,1),设直线AD的解析式为y=mx+n,把A,D两点代入得,解得m=2,n=1,直线AD的解析式为y=2x+1, 令y=0,得x=,点P坐标(,0),(3)SPAB=SABDSPBD=222=2=1.1 点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.20、(2):A、B、D;(2)2;222x+2y2;(2)0m【分析】(2)在直角坐标系描出A、B、C、D四点,观察图形即可得出结论(2)分别画出直线y=2x+2、y=

22、-x-2、y=-2得出图形为G,从而求出G的面积;根据P(x,y)为G内(含边界)的一点,求出x、y的范围,从而2x+2y的取值范围;(2)分别画出直线y=2x+2、y=2x-2、y=-2x-2、y=-2x+2所围成的图形M,再根据抛物线的对称轴xm,和抛物线yx2+2mx+2m2m2与图形M有交点,从而求出m的取值范围【详解】解:(2)如图所示:这四个点中是xy20的解的点是A、B、D故答案为:A、B、D;(2)如图所示:不等式组在坐标系内形成的图形为G,所以G的面积为:222根据图象得:2x2,2y2,62x2,62y2,222x+2y2答:2x+2y的取值范围为222x+2y2(2)如图

23、所示为不等式组的解集围成的图形,设为M,抛物线yx2+2mx+2m2m2与图形M有交点时m的取值范围:抛物线的对称轴xm,m,或m,m或m又22m2m22,0m,综上:m的取值范围是0m【点睛】本题考查了二次函数的综合题,涉及到了一次函数与方程、一次函数与不等式、二次函数与不等式等知识,熟练掌握相关知识是解题的关键21、(1)PD是O的切线证明见解析.(2)1.【解析】试题分析:(1)连结OP,根据圆周角定理可得AOP=2ACP=120,然后计算出PAD和D的度数,进而可得OPD=90,从而证明PD是O的切线;(2)连结BC,首先求出CAB=ABC=APC=45,然后可得AC长,再证明CAEC

24、PA,进而可得,然后可得CECP的值试题解析:(1)如图,PD是O的切线证明如下:连结OP,ACP=60,AOP=120,OA=OP,OAP=OPA=30,PA=PD,PAO=D=30,OPD=90,PD是O的切线(2)连结BC,AB是O的直径,ACB=90,又C为弧AB的中点,CAB=ABC=APC=45,AB=4,AC=Absin45=C=C,CAB=APC,CAECPA,CPCE=CA2=()2=1考点:相似三角形的判定与性质;圆心角、弧、弦的关系;直线与圆的位置关系;探究型22、(1)D(1,4);(1);(3)存在,t的值为1 ;(4)当或或时,DPQ是一个以DQ为腰的等腰三角形【分

25、析】(1)由题意得出点D的纵坐标为4,求出y=1x中y=4时x的值即可得;(1)由PQOD证CPQCOD,得,即,解之可得;(3)分别过点Q、D作QEOC,DFOC交OC与点E、F,对于直线y=1x,令y=4求出x的值,确定出D坐标,进而求出BD,BC的长,利用勾股定理求出CD的长,利用两对角相等的三角形相似得到三角形CQE与三角形CDF相似,由相似得比例表示出QE,由底PC,高QE表示出三角形PQC面积,再表示出三角形ODP面积,依据SDOP=SPCQ列出关于t的方程,解之可得;(4)由三角形CQE与三角形CDF相似,利用相似得比例表示出CE,PE,进而利用勾股定理表示出PQ1,DP1,以及

26、DQ,分两种情况考虑:当DQ=DP;当DQ=PQ,求出t的值即可【详解】解:(1)OA=4把代入得D(1,4)(1)在矩形OABC中,OA=4,OC=5AB=OC=5,BC=OA=4BD=3,DC=5由题意知:DQ=PC=tOP=CQ=5tPQOD (3)分别过点Q、D作QEOC, DFOC交OC与点E、F则DF=OA=4DFQECQE CDF SDOP=SPCQ , 当t=5时,点P与点O重合,不构成三角形,应舍去t的值为1(4)CQE CDF 当时,解之得: 当时,解之得:答:当或或时,DPQ是一个以DQ为腰的等腰三角形【点睛】此题属于一次函数的综合问题,涉及的知识有:坐标与图形性质,相似

27、三角形的判定与性质,勾股定理,以及等腰三角形的性质,熟练掌握相似三角形的判定与性质以及勾股定理是解本题的关键23、【分析】根据直角三角形中,30所对的直角边等于斜边的一半,解得AD的长,再由等腰直角三角形的两条腰相等可得DC的长,最后根据勾股定理解题即可【详解】解:是边上的高【点睛】本题考查含30的直角三角形、等腰直角三角形的性质、勾股定理等知识,是重要考点,难度较易,掌握相关知识是解题关键24、(1)yx2+x+2(2)(,4)或(,)或(,)(3)(2,1)【解析】(1)利用待定系数法转化为解方程组即可(2)如图1中,分两种情形讨论当CPCD时,当DPDC时,分别求出点P坐标即可(3)如图2中,作CMEF于

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论