版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上已知纸板的两条边DF50cm,EF30cm,测得边DF离地面的高度AC1.5m,CD20m,则树高AB为()A12mB13.5mC15mD16.5m2以半径为1的圆的
2、内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )ABCD3如图,在ABCD中,AB:BC4:3,AE平分DAB交CD于点E,则DEF的面积与BAF的面积之比为()A3:4B9:16C4:3D16:94经过两年时间,我市的污水利用率提高了.设这两年污水利用率的平均增长率是,则列出的关于的一元二次方程为( )ABCD5如图是二次函数yax2+bx+c图象的一部分,其对称轴是x1,且过点(3,0),说法:abc0;2ab0;a+c0;若(5,y1)、(,y2)是抛物线上两点,则y1y2,其中说法正确的有()个A1B2C3D46正五边形的每个外角度数为( )ABCD7二次
3、函数yax2bxc的图象如图所示,若点A(-2.2,y1),B(-3.2,y2)是图象上的两点,则y1与y2的大小关系是()Ay1y2By1y2Cy1y2D不能确定8方程x240的解是Ax2Bx2Cx2Dx49若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD10已知一条抛物线的表达式为,则将该抛物线先向右平移个单位长度,再向上平移个单位长度,得到的新抛物线的表达式为( )ABCD二、填空题(每小题3分,共24分)11某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为,则可列出的方程是_.12如图,已知正六边形内接于,若正六边
4、形的边长为2,则图中涂色部分的面积为_.13已知a、b、c满足,a、b、c都不为0,则=_14闹元宵吃汤圆是我国传统习俗,正月十五小明的妈妈煮了一碗汤圆,其中有4个花生味和2个芝麻味,小明从中任意吃一个,恰好吃到花生味汤圆的概率是_15将一些相同的圆点按如图所示的规律摆放:第1个图形有3个圆点,第2个形有7个圆点,第3个图形有13个圆点,第4个图形有21个圆点,则第20个图形有_个圆点16函数的自变量的取值范围是 17如图,矩形中,以为圆心,为半径画弧,交于点,则图中阴影部分的面积是_. 18如图,在扇形OAB中,AOB=90,半径OA=1将扇形OAB沿过点B的直线折叠点 O恰好落在延长线上点
5、D处,折痕交OA于点C,整个阴影部分的面积_三、解答题(共66分)19(10分)国家计划2035年前实施新能源汽车,某公司为加快新旧动能转换,提高公司经济效益,决定对近期研发出的一种新型能源产品进行降价促销.根据市场调查:这种新型能源产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个新型能源产品的成本为100元.问:(1)设该产品的销售单价为元,每天的利润为元.则_(用含的代数式表示)(2)这种新型能源产品降价后的销售单价为多少元时,公司每天可获利32000元?20(6分)已知二次函数图象的顶点在原点,对称轴为轴.直线的图象与二次函数的图象交于点和
6、点(点在点的左侧)(1)求的值及直线解析式;(2)若过点的直线平行于直线且直线与二次函数图象只有一个交点,求交点的坐标.21(6分)在RtABC中,ACB=90,CDAB,垂足为D,AD=8,DB=2,求CD的长22(8分)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:我爱你,中国,歌唱祖国,我和我的祖国(分别用字母A,B,C依次表示这三首歌曲)比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛(1)八(1)班抽中歌曲我和我的祖国的概率是_;(2
7、)试用画树状图或列表的方法表示所有可能的结果,并求出八(1)班和八(2)班抽中不同歌曲的概率23(8分)2019年全国青少年禁毒知识竞赛开始以来,某市青少年学生踊跃参加,掀起了学习禁毒知识的热潮,禁毒知识竞赛的成绩分为四个等级:优秀,良好,及格,不及格为了了解该市广大学生参加禁毒知识竞赛的成绩,抽取了部分学生的成绩,根据抽查结果,绘制了如下两幅不完整的统计图:(1)本次抽查的人数是 ;扇形统计图中不及格学生所占的圆心角的度数为 ;(2)补全条形统计图;(3)若某校有2000名学生,请你根据调查结果估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共有多少人?24(8分)抛物线上部分点的横坐标
8、,纵坐标的对应值如下表:-3-2-1010430 (1)把表格填写完整;(2)根据上表填空:抛物线与轴的交点坐标是_和_;在对称轴右侧,随增大而_;当时,则的取值范围是_;(3)请直接写出抛物线的解析式25(10分)在平面直角坐标系中,四边形是矩形,点,点,点以点为中心,顺时针旋转矩形,得到矩形,点的对应点分别为,记旋转角为(1)如图,当时,求点的坐标;(2)如图,当点落在的延长线上时,求点的坐标;(3)当点落在线段上时,求点的坐标(直接写出结果即可)26(10分)如图,抛物线yax2+bx+6与x轴交于点A(6,0),B(1,0),与y轴交于点C(1)求抛物线的解析式;(2)若点M为该抛物线
9、对称轴上一点,当CM+BM最小时,求点M的坐标(3)抛物线上是否存在点P,使BCP为等腰三角形?若存在,有几个?并请在图中画出所有符合条件的点P,(保留作图痕迹);若不存在,说明理由参考答案一、选择题(每小题3分,共30分)1、D【解析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB【详解】DEF=BCD=90,D=D,DEFDCB,DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,由勾股定理求得DE=40cm,BC=15米,AB=AC+BC=1.5+15=16.5(米)故答案为16.5m【点睛】本题考查了相似三角形的
10、应用,解题的关键是从实际问题中整理出相似三角形的模型2、D【解析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积【详解】如图1,OC=1,OD=1sin30=;如图2,OB=1,OE=1sin45=;如图3,OA=1,OD=1cos30=,则该三角形的三边分别为:、,()2+()2=()2,该三角形是以、为直角边,为斜边的直角三角形,该三角形的面积是,故选:D【点睛】考查正多边形的外接圆的问题,应用边心距,半径和半弦长构成直角三角形,来求相关长度是解题关键。3、B【分析】根据相似三角形的面积比等
11、于相似比的平方即可解决问题【详解】解:四边形ABCD是平行四边形,ABCD,ABCD,DEAEAB,AE平分DAB,DAEEAB,DAEDEA,ADDE,AB:BC4:3,DE:AB3:4,DEFBAF,DE:EC3:1,DE:DCDE:AB3:4, 故选:B【点睛】本题考查平行四边形的性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型4、A【分析】设这两年污水利用率的平均增长率是,原有污水利用率为1,利用原有污水利用率(1+平均每年污水利用率的增长率=污水利用率,列方程即可.【详解】解:设这两年污水利用率的平均增长率是,由题意得出:故答案为:A.【点睛】本题考
12、查的知识点是用一元二次方程解决实际问题,解题的关键是根据题目找出等量关系式,再列方程.5、D【分析】由抛物线开口方向得到a0,根据抛物线的对称轴得b2a0,则2ab0,则可对进行判断;根据抛物线与y轴的交点在x轴下方得到c0,则abc0,于是可对进行判断;由于x1时,y0,则得到a2a+c0,则可对进行判断;通过点(5,y1)和点(,y2)离对称轴的远近对进行判断【详解】解:抛物线开口向上,a0,抛物线对称轴为直线x1,b2a0,则2ab0,所以正确;抛物线与y轴的交点在x轴下方,c0,abc0,所以正确;x1时,yab+c0,b2a,a2a+c0,即a+c0,所以正确;点(5,y1)离对称轴
13、要比点(,y2)离对称轴要远,y1y2,所以正确故答案为D【点睛】本题考查了二次函数图象与系数的关系,灵活运用二次函数解析式和图像是解答本题的关键.6、B【解析】利用多边形的外角性质计算即可求出值【详解】360572,故选:B【点睛】此题考查了多边形的内角与外角,熟练掌握多边形的外角性质是解本题的关键7、A【分析】根据抛物线的对称性质进行解答【详解】因为抛物线yax2bxc的对称轴是x3,点 A(-2.2,y1),B(-3.2,y2),所以点B与对称轴的距离小于点A到对称轴的距离,所以y1y2故选:A【点睛】考查了二次函数的性质,二次函数图象上点的坐标特征解题时,利用了二次函数图象的对称性8、
14、C【分析】方程变形为x1=4,再把方程两边直接开方得到x=1【详解】解:x1=4,x=1故选C9、B【详解】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0时,y0,.10、A【分析】可根据二次函数图像左加右减,上加下减的平移规律进行解答.【详解】二次函数向右平移个单位长度得, ,再向上平移个单位长度得即故选A.【点睛】本题考查了二次函数的平移,熟练掌握平移规律是解题的关键.二、填空题(每小题3分,共24分)11、【分析】先列出第一次降价后售价的代数式,再根据第一次的售价列出第二次降价后售价的代数式,然后根据已知条件即可列出方程【详解】依题意得:第一次
15、降价后售价为:2370(1-x),则第二次降价后的售价为:2370(1-x)(1-x)=2370(1-x)2,故故答案为【点睛】此题考查一元二次方程的运用,解题关键在于要注意题意指明的是降价,应该是1-x而不是1+x12、【分析】根据圆的性质和正六边形的性质证明CDABDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点正六边形内接于,BOA=AOC=60,OA=OB=OC=4,BOC=120,ODBC,BD=CDOCB=OBC=30,OD= ,CDA=BDO,CDABDO,SCDA=SBDO,图中涂色部分的面积等于扇形AOB
16、的面积为:.故答案为:.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.13、 【解析】设则所以,故答案为:.14、【分析】用花生味汤圆的个数除以汤圆总数计算即可.【详解】解:一碗汤圆,其中有4个花生味和2个芝麻味,从中任意吃一个,恰好吃到花生味汤圆的概率是:故答案为.【点睛】本题考查了概率公式的应用,如果一个事件共有n种可能,而且每一个事件发生的可能性相同,其中事件A出现m种可能,那么事件A的概率.15、1【分析】观察图形可知,每个图形中圆点的个数为序号数的平方加上序号数+1,依此可求第n个图有多少个圆点【详解】解:由图形可知,
17、第1个图形有12+1+13个圆点;第2个图形有22+2+17个圆点;第3个图形有32+3+113个圆点;第4个图形有42+4+121个圆点;则第n个图有(n2+n+1)个圆点;所以第20个图形有202+20+11个圆点故答案为:1【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键16、x1【详解】解:依题意可得,解得,所以函数的自变量的取值范围是17、【分析】阴影面积矩形面积三角形面积扇形面积.【详解】作EFBC于F,如图所示:在Rt中,=2,在Rt中,=故答案是:.【点睛】本题主要是利用扇形面积和三角形面积公式计算阴影部分的面积,解题关键是找到所求的量的等量关系18
18、、912【详解】解:连接OD交BC于点E,AOB=90,扇形的面积=9,由翻折的性质可知:OE=DE=3,在RtOBE中,根据特殊锐角三角函数值可知OBC=30,在RtCOB中,CO=2,COB的面积=1,阴影部分的面积为=912故答案为912【点睛】本题考查翻折变换(折叠问题)及扇形面积的计算,掌握图形之间的面积关系是本题的解题关键三、解答题(共66分)19、(1)或;(2)当销售单价为180元时,公司每天可获利32000元.【分析】(1)根据总利润单件利润销量,用的代数式分别表示两个量,构建方程即可;(2)由(1)所得的函数,当时,解一元二次方程即可求得答案.【详解】(1)依题意得:(2)
19、公司每天可获利32000元,即,则,化简得:,解得:,答:当销售单价为180元时,公司每天可获利32000元.【点睛】本题主要考查二次函数的应用、一元二次方程的解法,理解题意找到题目蕴含的相等关系列出方程是解题的关键20、(1)m=,;(2)【分析】(1)由于抛物线的顶点为原点,因此可设其解析式为y=ax2,直接将A点,B点的坐标代入抛物线中即可求出抛物线的解析式以及m的值,进而可知出点B的坐标,再将A,B点的坐标代入一次函数中,即可求出一次函数的解析式(2)根据题意可知直线l2的解析式,由抛物线与l2只有一个交点,联立直线与二次函数的解析式,消去y,得出一个含x一元二次方程,根据方程的判别式
20、为0可求得n的值,进而得出结果【详解】(1)解:假设二次函数的解析式为,将分别代入二次函数的解析式,得:,解得解得:将代入中,得,,解得:的解析式为(2)由题意可知:l2l1,可设直线的解析式为:过点,则有:由题意,联立直线与二次函数的解析式,可得以下方程组:,消元,得:,整理,得:, 由题意,得与只有一个交点,可得:,解得:将代回方程中,得将代入中,得可得交点坐标为【点睛】此题主要考查了求二次函数解析式,求一次函数解析式,以及两函数的交点问题,解决问题的关键是联立方程组求解21、CD=1【分析】利用相似三角形的判定和性质,先求出ADCCDB,再根据对应边成比例,即可求出CD的值【详解】CDA
21、B,ADC=CDB=90,ACD +A=90,ACB=90,ACD +BCD=90,A=BCD ,ADC CDB,= AD BD=82=16, CD=1【点睛】此题运用了相似三角形的判定和性质,两个角对应相等,则两三角形相似22、(1);(2)【分析】(1)直接根据概率公式计算可得;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得【详解】解:(1)因为有,种等可能结果,所以八(1)班抽中歌曲我和我的祖国的概率是;故答案为(2)树状图如图所示:共有9种可能,八(1)班和八(2)班抽中不同歌曲的概率【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等
22、可能的结果,23、(1)120,18;(2)详见解析;(3)1000【分析】(1)由优秀的人数及其所占百分比可得总人数;用360乘以不及格人数所占比例即可得出不及格学生所占的圆心角的度数;(2)用总人数减去各等级人数之和求出良好的人数,据此可补全条形图;(3)用总人数乘以样本中“优秀”和“良好”人数和占被调查人数的比例即可得出答案【详解】解:(1)本次抽查的人数为:2420%120(人),扇形统计图中不及格学生所占的圆心角的度数为36018,故答案为:120,18;(2)良好的人数为:120(24+54+6)36(人),补全图形如下:(3)估计该校学生知识竞赛成绩为“优秀”和“良好”两个等级共
23、有:20001000(人)【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小24、(1)2;(2)抛物线与轴的交点坐标是和;随增大而减小;的取值范围是;(2)【分析】(1)利用表中对应值的特征和抛物线的对称性得到抛物线的对称轴为直线x=-1,则x=0和x=-2时,y的值相等,都为2;(2)利用表中y=0时x的值可得到抛物线与x轴的交点坐标;设交点式y=a(x+2)(x-1),再把(0,2)代入求出a得到抛物线解析式为y=-x2-2x+2,则可判断抛物线的
24、顶点坐标为(-1,1),抛物线开口向下,然后根据二次函数的性质解决问题;由于x=-2时,y=2;当x=2时,y=-5,结合二次函数的性质可确定y的取值范围;(2)由(2)得抛物线解析式【详解】解:(1)x=-2,y=0;x=1,y=0,抛物线的对称轴为直线x=-1,x=0和x=-2时,y=2;故答案是:2;(2)x=-2,y=0;x=1,y=0,抛物线与x轴的交点坐标是(-2,0)和(1,0);故答案是:(-2,0)和(1,0);设抛物线解析式为y=a(x+2)(x-1),把(0,2)代入得2=-2a,解得a=-1,抛物线解析式为y=-(x+2)(x-1),即y=-x2-2x+2,抛物线的顶点
25、坐标为(-1,1),抛物线开口向下,在对称轴右侧,y随x增大而减小;故答案是:减小;当x=-2时,y=2;当x=2时,y=-1-1+2=-5,当x=-1,y有最大值为1,当-2x2时,则y的取值范围是-5y1故答案是:-5y1;(2)由(2)得抛物线解析式为y=-x2-2x+2,故答案是:y=-x2-2x+2【点睛】本题考查了抛物线解析式的求法及与x轴的交点问题:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点问题转化为关于x的一元二次方程的问题也考查了二次函数的性质25、(1)点的坐标为;(2)点的坐标为;(3)点的坐标为【分析】(1) 过点作轴于根据已知条件可得出AD=6,再直角三角形ADG中可求出DG,AG的长,即可确定点D的坐标.(2) 过点作轴于于可得出,根据勾股定理得出AE的长为10,再利用面积公式求出DH,从而求出OG,DG的长,得出答案(3) 连接,作轴于G,由旋转性质得到,从而可证,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版家电产品消费者满意度调查服务合同2篇
- 二零二五版房地产融资居间代理合同范本3篇
- 二零二五年电影联合制作与市场推广合同2篇
- 二零二五版茶叶茶具专卖店加盟管理合同3篇
- 二零二五版汽车购置贷款保证担保合同3篇
- 二零二五年度化肥原料进口与分销合同3篇
- 二零二五年度航空航天股权买卖合同范本3篇
- 二零二五版户外广告牌定期检查与维修合同3篇
- 二零二五年度驾校车辆购置税承包合同3篇
- 国际贸易第六章出口合同订立2025年绿色贸易标准与认证3篇
- 水泥厂钢结构安装工程施工方案
- 2023光明小升初(语文)试卷
- 三年级上册科学说课课件-1.5 水能溶解多少物质|教科版
- GB/T 7588.2-2020电梯制造与安装安全规范第2部分:电梯部件的设计原则、计算和检验
- GB/T 14600-2009电子工业用气体氧化亚氮
- 小学道德与法治学科高级(一级)教师职称考试试题(有答案)
- 河北省承德市各县区乡镇行政村村庄村名居民村民委员会明细
- 实用性阅读与交流任务群设计思路与教学建议
- 应急柜检查表
- 通风设施标准
- 酒店市场营销教案
评论
0/150
提交评论