版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1我县为积极响应创建“省级卫生城市”的号召,为打造“绿色乐至,健康乐至”是我们每个乐至人应尽的义务.某乡镇积极开展垃圾分类有效回收,据统计2017年有效回收的
2、垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,设这两年该乡镇的垃圾有效回收平均增长率为x,则下列方程正确的是( ).A1.5(1+2x)2.8BCD+2已知菱形的周长为40 cm,两对角线长度比为3:4,则对角线长分别为( )A12 cm16 cmB6 cm,8 cmC3 cm,4 cmD24 cm,32 cm3已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )A20cm2B20cm2C10cm2D5cm24如图,在ABC中,A=90若AB=12,AC=5,则cosC的值为( )ABCD5下列运算中,正确的是( )Ax3+x=x4 B(x2)3=x6 C3x2
3、x=1D(ab)2=a2b26如图,在RtABC中,ACB=90,CDAB,垂足为D,AF平分CAB,交CD于点E,交CB于点F,若AC=3,AB=5,则CE的长为()ABCD7如图,在O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=2,CD=1,则BE的长是A5B6C7D88反比例函数的图象经过点,若点在反比例函数的图象上,则n等于( )A-4B-9C4D99二次函数ax2+bx+c的部分对应值如表,利用二次的数的图象可知,当函数值y0时,x的取值范围是()x321012y1250343A0 x2Bx0或x2C1x3Dx1或x310如图,下面图形及各个选项均是由边长为1的小方格
4、组成的网格,三角形的顶点均在小方格的顶点上,下列四个选项中哪一个阴影部分的三角形与已知相似( )ABCD11如图,将绕点逆时针旋转70到的位置,若,则()A45B40C35D3012在一个不透明的布袋中装有9个白球和若干个黑球,它们除颜色不同外,其余均相同。若从中随机摸出一个球,摸到白球的概率是,则黑球的个数为( )A3B12C18D27二、填空题(每题4分,共24分)13如图,在44的正方形网格中,若将ABC绕着点A逆时针旋转得到ABC,则的长为_14如图,点A在双曲线y上,点B在双曲线y(k0)上,ABx轴,分别过点A,B向x轴作垂线,垂足分别为D,C,若矩形ABCD的面积是9,则k的值为
5、_15如图,把直角三角形的斜边放在定直线上,按顺时针方向在上转动两次,使它转到的位置.设,则顶点运动到点的位置时,点经过的路线长为_16小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形图2中留个形状大小都相同的四边形围成一个圆的内接六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为_cm17如图在RtOAB中AOB20,将OAB绕点O逆时针旋转100得到OA1B1,则A1OB_18如图,在ABC中,P是AB边上的点,请补充一个条件,使ACPABC,这个条件可以是:_(写出一个即可),三、解答题(共78分)19
6、(8分)如图,一艘船由A港沿北偏东65方向航行km至B港,然后再沿北偏西40方向航行至C港,C港在A港北偏东20方向.求:(1)C的度数;(2)A,C两港之间的距离为多少km.20(8分)如图,已知反比例函数的图像与一次函数的图像交于A(1,),B在(,3)两点(1)求的值;(2)直接写出使一次函数值大于反比例函数值时x的取值范围21(8分)己知:如图,抛物线与坐标轴分别交于点, 点是线段上方抛物线上的一个动点,(1)求抛物线解析式:(2)当点运动到什么位置时,的面积最大?22(10分)已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个
7、小正方形的边长是一个单位长度),(1)在正方形网格中画出ABC绕点O顺时针旋转90得到A1B1C1(2)求出线段OA旋转过程中所扫过的面积(结果保留)23(10分)体育课上,小明、小强、小华三人在足球场上练习足球传球,足球从一个人传到另个人记为踢一次.如果从小强开始踢,请你用列表法或画树状图法解决下列问题:(1)经过两次踢球后,足球踢到小华处的概率是多少?(2)经过三次踢球后,足球踢回到小强处的概率是多少?24(10分)永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超
8、过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品(1)用x的代数式表示该厂购进化工原料 吨;(2)当x50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?25(12分)如今网上购物已经成为一种时尚,某网店“双十一”全天交易额逐年增长,2015年交易额为50万元,2017年交易额为72万元(1)求2015年至2017年“双十一”交易额的年平均增长率;(2)如果按(1)中的增长率,到2018年“双十一”交易额是否能达到100万元?请说明理由26如
9、图,在ABC中,CAB90,D是边BC上一点,,E为线段AD的中点,连结CE并延长交AB于点F.(1)求证:ADBC.(2)若AF:BF1:3,求证:CD:DB1:2. 参考答案一、选择题(每题4分,共48分)1、B【分析】根据题意可得等量关系:2017年有效回收的垃圾的量(1+增长率)2=2019年有效回收的垃圾的量,根据等量关系列出方程即可【详解】设这两年该乡镇的垃圾有效回收平均增长率为x,2017年有效回收的垃圾约1.5万吨,截止2019年底,有效回收的垃圾约2.8万吨,1.5(1+x)2=2.8,故选:B.【点睛】此题考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设
10、变化前的量为a,变化后的量为b,平均变化率为x,经过两次变化后的数量关系为a(1x)2=b2、A【解析】试题分析:如图,四边形ABCD是菱形,且菱形的周长为40cm,设故选A考点:1、菱形的性质;2、勾股定理.3、C【解析】圆锥的侧面积=底面周长母线长2,把相应数值代入,圆锥的侧面积=2252=10故答案为C4、A【解析】A=90,AC=5,AB=12,BC=13,cosC=,故选A.5、B【解析】试题分析:A、根据合并同类法则,可知x3+x无法计算,故此选项错误;B、根据幂的乘方的性质,可知(x2)3=x6,故正确;C、根据合并同类项法则,可知3x-2x=x,故此选项错误;D、根据完全平方公
11、式可知:(a-b)2=a2-2ab+b2,故此选项错误;故选B考点:1、合并同类项,2、幂的乘方运算,3、完全平方公式6、A【分析】根据三角形的内角和定理得出CAF+CFA=90,FAD+AED=90,根据角平分线和对顶角相等得出CEF=CFE,即可得出EC=FC,再利用相似三角形的判定与性质得出答案【详解】过点F作FGAB于点G,ACB=90,CDAB,CDA=90,CAF+CFA=90,FAD+AED=90,AF平分CAB,CAF=FAD,CFA=AED=CEF,CE=CF,AF平分CAB,ACF=AGF=90,FC=FG,B=B,FGB=ACB=90,BFGBAC,AC=3,AB=5,A
12、CB=90,BC=4,FC=FG,解得:FC=,即CE的长为故选A【点睛】本题考查了直角三角形性质、等腰三角形的性质和判定,三角形的内角和定理以及相似三角形的判定与性质等知识,关键是推出CEF=CFE7、B【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可【详解】解:半径OC垂直于弦AB,AD=DB= AB= 在RtAOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)2+( )2,解得,OA=4OD=OC-CD=3,AO=OE,AD=DB,BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键8、
13、A【分析】将点(-2,6)代入得出k的值,再将代入即可【详解】解:反比例函数的图象经过点,k=(-2)6=-12,又点(3,n)在此反比例函数的图象上,3n=-12,解得:n=-1故选:A【点睛】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式反之,只要满足函数解析式就一定在函数的图象上9、C【分析】利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x=1,则抛物线的顶点坐标为(1,4),所以抛物线开口向下,则抛物线与x轴的一个交点坐标为(3,1),然后写出抛物线在x轴上方所对应的自变量的范围即可【详解】抛物线经过点(1,3),(2,3),抛物线的对称轴为
14、直线,抛物线的顶点坐标为(1,4),抛物线开口向下,抛物线与x轴的一个交点坐标为(1,1),抛物线与x轴的一个交点坐标为(3,1),当1x3时,y1故选:C【点睛】本题考查了二次函数与轴的交点、二次函数的性质等知识,解题的关键是要认真观察,利用表格中的信息解决问题10、A【分析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案【详解】解:已知给出的三角形的各边分别为1、,只有选项A的各边为、2、与它的各边对应成比例故选:A【点睛】本题考查三角形相似判定定理以及勾股定理,是基础知识要熟练掌握11、D【分析】首先根据旋转角定义可以知道,而,然后根据图形即可求出【详
15、解】解:绕点逆时针旋转70到的位置,而,故选D【点睛】此题主要考查了旋转的定义及性质,其中解题主要利用了旋转前后图形全等,对应角相等等知识12、C【分析】设黑球个数为,根据概率公式可知白球个数除以总球数等于摸到白球的概率,建立方程求解即可.【详解】设黑球个数为,由题意得解得:故选C.【点睛】本题考查根据概率求数量,熟练掌握概率公式建立方程是解题的关键.二、填空题(每题4分,共24分)13、【分析】根据图示知 ,所以根据弧长公式求得 的长【详解】根据图示知, ,的长为:故答案为: 【点睛】本题考查了弧长的计算公式,掌握弧长的计算方法是解题的关键14、1【分析】过点A作AEy轴于点E,首先得出矩形
16、EODA的面积为:4,利用矩形ABCD的面积是9,则矩形EOCB的面积为:4+9=1,再利用xy=k求出即可【详解】过点A作AEy轴于点E,点A在双曲线y上,矩形EODA的面积为:4,矩形ABCD的面积是9,矩形EOCB的面积为:4+91,则k的值为:xyk1故答案为1【点睛】此题主要考查了反比例函数关系k的几何意义,得出矩形EOCB的面积是解题关键15、【分析】根据题意得到直角三角形在直线上转动两次点A分别绕点B旋转120和绕C旋转90,将两条弧长求出来加在一起即可【详解】解:在RtABC中,BC=1,AB=2,CBA=60,弧AA=;弧AA=;点A经过的路线的长是;故答案为:.【点睛】本题
17、考查了弧长的计算方法及勾股定理,解题的关键是根据直角三角形的转动过程判断点A是以那一点为圆心转动多大的角度16、1【分析】设两个正六边形的中心为O,连接OP,OB,过点O作OGPM于点G,OHAB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM的长,而且面积等于小正六边形的面积的, 故三角形PMN的面积很容易被求出,根据正六边形的性质及等腰三角形的三线和一可以得出PG的长,进而得出OG的长,,在RtOPG中,根据勾股定理得 OP的长,设OB为x,根据正六边形的性质及等腰三角形的三线和一可以得出BH,OH的长,进而得出PH的长,在RtPHO中,根据勾股定理得关于x的方程,求解得
18、出x的值,从而得出答案【详解】解: 设两个正六边形的中心为O,连接OP,OB,过点O作OGPM于点G,OHAB于点H,如图所示:很容易证出三角形PMN是一个等边三角形,边长PM=,而且面积等于小正六边形的面积的,故三角形PMN的面积为cm2, OGPM,且O是正六边形的中心,PG=PM=OG=在RtOPG中,根据勾股定理得 :OP2=OG2+PG2,即=OP2 OP=7cm,设OB为x,OHAB,且O是正六边形的中心,BH=X,OH=, PH=5-x,在RtPHO中,根据勾股定理得OP2=PH2+OH2,即解得:x1=1,x2=-3(舍)故该圆的半径为1cm故答案为1【点睛】本题以相机快门为背
19、景,从中抽象出数学模型,综合考查了多边形、圆、三角形及解三角形等相关知识,突出考查数学的应用意识和解决问题的能力试题通过将快门的光圈变化这个动态的实际问题化为静态的数学问题,让每个学生都能参与到实际问题数学化的过程中,鼓励学生用数学的眼光观察世界;在运用数学知识解决问题的过程中,关注思想方法,侧重对问题的分析,将复杂的图形转化为三角形或四边形解决,引导学生用数学的语言表达世界,用数学的思维解决问题17、80【分析】由将OAB绕点O逆时针旋转100得到OA1B1,可求得A1OA的度数,继而求得答案【详解】将OAB绕点O逆时针旋转100得到OA1B1,A1OA100,AOB20,A1OBA1OAA
20、OB80故答案为:80【点睛】此题考查了旋转的性质注意找到旋转角是解此题的关键18、ACP=B(或)【分析】由于ACP与ABC有一个公共角,所以可利用两组对应边的比相等且夹角对应相等的两个三角形相似或有两组角对应相等的两个三角形相似进行添加条件【详解】解:PAC=CAB,当ACP=B时,ACPABC;当时,ACPABC故答案为:ACP=B(或)【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似:有两组角对应相等的两个三角形相似三、解答题(共78分)19、(1)C=60(2)AC=【分析】(1)根据方位角的概念确定ACB=40+20=60;(2)AB=30 ,过
21、B作BEAC于E,解直角三角形即可得到结论【详解】解:(1)如图,在点C处建立方向标根据题意得,AFCMBDACM=FAC, BCM=DBCACB=ACM+BCM=40+20=60,(2)AB=30 ,过B作BEAC于E,AEB=CEB=90,在RtABE中,ABE=45,AB=30,AE=BE=AB=30km,在RtCBE中,ACB=60,CE=BE=10 km,AC=AE+CE=30+10 ,A,C两港之间的距离为(30+10)km,【点睛】本题考查了解直角三角形的应用,方向角问题,三角形的内角和,是基础知识比较简单20、(1)1;(2)x1或0 x【分析】(1)将点B代入求出,再将点A代
22、入即可求出的值;(2)由图像可得结论.【详解】(1)把B(,-3)代入中,得当时,(2)如图,过点A、点B且平行于y轴及y轴所在的三条直线把平面分成了4部分由图象可得x1或0 x时一次函数的图像在反比例函数图像的上方时,此时一次函数值大于反比例函数值,所以x的取值范围为x1或0 x.【点睛】本题考查了反比例函数,将反比例函数的解析式与图像相结合是解题的关键.21、(1);(2)点运动到坐标为,面积最大.【分析】(1)用待定系数法即可求抛物线解析式(2)设点P横坐标为t,过点P作PFy轴交AB于点F,求直线AB解析式,即能用t表示点F坐标,进而表示PF的长把PAB分成PAF与PBF求面积和,即得
23、到PAB面积与t的函数关系,配方即得到t为何值时,PAB面积最大,进而求得此时点P坐标【详解】解: (1) 抛物线过点, 解这个方程组,得,抛物线解析式为.(2)如图1,过点作轴于点,交于点.时,,.直线解析式为.点在线段上方抛物线上,设.=点运动到坐标为,面积最大.【点睛】本题考查了二次函数的图象与性质,利用二次函数求三角形面积的最大值,关键在于把原三角形分割成有一边平行于y轴的两个三角形面积之和.22、(1)见解析;(2)【分析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1即可;(2)利用扇形的面积公式计算【详解】(1)如图,A1B1C1为所作;(2)线段OA旋转过
24、程中所扫过的面积【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形23、(1);(2).【分析】(1)根据画列表法或树状图求概率;(2)根据画列表法或树状图求概率【详解】解:(1)画树状图如下图所示:由树状图可知,(经过两次踢球后,足球踢到小华处).(2)画树状图如下图所示:由树状图可知,(经过三次踢球后,足球踢回到小强处).【点睛】本题考查了根据画树状图求概率24、(1)x;(2)y4x2+800 x;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在100吨150吨范围内【分析】(1)根据“每1吨化工原料可以加工成化工产品0.8吨”,即可求出;(2)根据总利润总售价总成本即可求出y关于x的函数关系式;(3)先求出y=38400元时,x的值,然后根据二次函数图象的开口方向和增减性即可求出x的取值范围.【详解】(1)x0.8x吨,故答案为:x;故答案为:x;(2)根据题意得,yx16004(x50)x8004x2+800 x,则y关于x的函数关系式为:y4x2+800 x;(3)当y38400
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论