2019年四川省攀枝花中考数学试题解析版_第1页
2019年四川省攀枝花中考数学试题解析版_第2页
2019年四川省攀枝花中考数学试题解析版_第3页
2019年四川省攀枝花中考数学试题解析版_第4页
2019年四川省攀枝花中考数学试题解析版_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 攀枝花市2019年中考数学试题一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中只有一项是符合题目要求的。1、等于( ) A、 B、 C、 D、答案:B考点:乘方运算。解析:(1)2(1)(1)12、在,这四个数中,绝对值最小的数是( ) A、 B、 C、 D、答案:A考点: 实数的绝对值。解析:00,11,22,33显然0最小,所以,选A。3、用四舍五入法将精确到千位,正确的是( ) A、 B、 C、 D、答案:C (A答案是精确到个位,所以错误)考点:科学记数法。解析:把一个数表示成a与10的n次幂相乘的形式(1a10,n为整数),这种记数法叫做科学记数法。所以

2、,1305421.30542105,又精确到千位,所以,1305421.305421051.311054、下列运算正确的是( ) A、 B、 C、 D、答案:A考点:整式的运算。解析:合并同类项,可知,A正确;B、错误,因为C错误,因为D错误,因为5、如图,,则的度数是( ) A、 B、 C、 D、答案:C考点:两直线平行的性质。解析:因为ADCD,所以,DCA65,又因为,,所以,2DCA65,选C。6、下列说法错误的是( ) A、平行四边形的对边相等 B、对角线相等的四边形是矩形 C、对角线互相垂直的平行四边形是菱形 D、正方形既是轴对称图形、又是中心对称图形答案:B考点: 特殊四边形的性

3、质。解析:对角线相等的四边形不一定是矩形,如等腰梯形的对角线也相等,所以,B错误。正确的说法是:对角线相等的平行四边形是矩形。A、C、D都是正确的。7、比较A组、B组中两组数据的平均数及方差,一下说法正确的是( ) A、A组,B组平均数及方差分别相等 B、A组,B组平均数相等,B组方差大 C、A组比B组的平均数、方差都大 D、A组,B组平均数相等,A组方差大答案:D考点: 数据的平均数与方差的意义。解析:A组的平均数为:53+(1)4B组的平均数为:42+3+04,所以,A、B组的平均数相等,由图可知,A组波动大,B组波动小,所以,A组的方差大,选D。8、一辆货车送上山,并按原路下山。上山速度

4、为千米/时,下山速度为千米/时。则货车上、下山的平均速度为( )千米/时。 A、 B、 C、 D、答案:D考点:路程、速度、时间的关系。解析:设上山的路程为S,则下山的路程也为S,上山的时间为:,下山的时间为:,上、下山的平均速度为: ,选D。9、在同一坐标系中,二次函数与一次函数的图像可能是( )答案:C 考点:二次函数与一次函数的图象。解析:一次函数与y轴交点为:(0,),对于A,由直线与y轴交点可知,0,即a0,一次函数的图象中,y随x的增大而增大,所以,b0,因此,0,但由图可知,抛物线的对称轴0,矛盾,排除;对于B,由 ,得:0,4a20,即直线与抛物线无交点,所以,B排除;对于D,

5、因为抛物线必经过原点,所以,D排除;只有C符合。10、如图,在正方形中,是边上的一点,将正方形边沿折叠到,延长交于。连接,现在有如下四个结论:; 其中结论正确的个数是( ) A、1 B、2 C、3 D、4答案:B考点: 勾股定理,三角形的全等,应用数学知识解决问题的综合能力。解析:由题易知,则(HL),又,所以正确;设,则,又, , ,,在中,由勾股定理可得 解得,又,不是等边三角形,所以错误;由可知和是对称型全等,则,又,则为直角三角形,成立;由可知,又,错误,故正确结论为二、填空题;本大题共6小题,每小题4分,共24分。11、的相反数是 。答案:考点: 相反数。解析:3,3的相反数为312

6、、分解因式: 。答案:考点:分解因式解析:13、一组数据1,2,5,8的平均数是5,则该组数据的中位数是 。答案:5考点: 数据的中位数,平均数。解析:,解得:x9,所以,数据为:1,2,5,8,9,中位数为5.14、已知、是方程的两根,则 。答案:6考点: 一元二次方程,韦达定理。解析:由韦达定理可得,15、如图是一个多面体的表面展开图,如果面在前面,从左面看是面,那么从上面看是面 。(填字母)答案:C或E考点: 长方体的展开图。解析:当C为底面时,F为前面,A为后面,B为左面,D为右面,上面是E;C与E是相对面,B与D为相对面,A与F为相对面,E在底面时,则上面是C。16、正方形, ,按如

7、图所示的方式放置,点,和点,分别在直线()和轴上。已知,点,则的坐标是 。答案:考点:找规律,勾股定理。解析:由勾股定理,得:A1B1,B1C1A1B1,C1的坐标为:C1(2,1),B2C2A2B22,C2的坐标为:C2(5,2),B3C3A3B34,C3的坐标为:C2(11,4),B4C4A4B48,C4的坐标为:C2(23,8),B5C5A5B516,C5的坐标为:C2(47,16),三、解答题:本大题共8小题,共66分,解答应写出文字说明,证明过程或验算步骤17、(本小题满分6分)解不等式,并把它的解集在数轴上表示出来。 考点:一元一次不等 式解析: 18、(本小题满分6分)如图,在中

8、,是边上的高,是边上的中线,且。求证:(1)点在的垂直平分线上;(2)考点: 中垂线的证明,等 边对等 角。解析:证明:(1)连接 是边上的高 是边上的中线 点在线段的垂直平分线上 (2)19、(本小题满分6分)某市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表兴趣班频数频率A0.35B180.30C15D6合计1最受欢迎兴趣班调查问卷你好!这是一份关于你最喜欢的兴趣班问卷调查表,请在表格中选择一个(只能选一个)你最喜欢的兴趣班选项,在其后空格内打“”谢谢你的合

9、作选项兴趣班请选择A绘画B音乐C舞蹈D跆拳道 请你根据统计表中提供的信息回答下列问题: (1)统计表中的 , ; (2)根据调查结果,请你估计该市2000名小学生中最喜欢“绘画”兴趣的人数; (3)王姝和李要选择参加兴趣班,若他们每人从、四类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类的概率。考点: 概率。解析:解:(1),;(2)最喜欢绘画兴趣的人数为700人 王姝李要ABCDAAAABACADBABBBCBDBCACBCCCDCDADBDCDDD (3) 所以,两人恰好选中同一类的概率为20、(本小题满分8分)如图,在平面直角坐标系中,一次函数的图像与反比例函数的

10、图像在第二象限交于点,与轴交于点,点在轴上,满足条件:,且,点的坐标为,。 (1)求反比例函数的表达式; (2)直接写出当时,的解集。考点: 反比函数和图象,三角形的全等,图象与不等 式。解析:解:(1)如图作轴于点则点的坐标为,在和中有,即反比例函数解析式为(2)因为在第二象限中,点右侧一次函数的图像在反比例函数图像的下方 所以当时,的解集为21、(本小题满分8分)攀枝花得天独厚,气候宜人,农产品资源极为丰富,其中晚熟芒果远销北上广等大城市。某水果店购进一批优质晚熟芒果,进价为10元/千克,售价不低于15元/千克,且不超过40元/每千克,根据销售情况,发现该芒果在一天内的销售量(千克)与该天

11、的售价(元/千克)之间的数量满足如下表所示的一次函数关系。销售量(千克)32.53535.538售价(元/千克)27.52524.522(1)某天这种芒果售价为28元/千克。求当天该芒果的销售量(2)设某天销售这种芒果获利元,写出与售价之间的函数关系式。如果水果店该天获利400元,那么这天芒果的售价为多少元?考点: 待定系数法,一元二次方程,解应用题。解析:解:(1)设该一次函数解析式为则解得:()当时,芒果售价为28元/千克时,当天该芒果的销售量为32千克 (2)由题易知 当时,则 整理得: 解得:, 所以这天芒果的售价为20元22、(本小题满分8分) 如图1,有一个残缺的圆,请做出残缺圆的

12、圆心(保留作图痕迹,不写做法) 如图2,设是该残缺圆的直径,是圆上一点,的角平分线交于点,过点作的切线交的延长线于点。 (1)求证:;(2)若,求残缺圆的半圆面积。H 图1 图2考点: 垂径定理,切线的性质定理,矩形的判定。解析:解:图1做图题作法:在残缺的圆上取两条不平行的弦和;以点为圆心大于一半长为半径在两侧作圆弧;以点为圆心,同样长的半径在两侧作圆弧与中的 圆弧交于,两点;作直线即为线段的垂直平分线;以同样的方法做线段的垂直平分线与直线交于点即为该残缺圆的圆心 四边形为矩形 图2解答过程: (1)证明:连接交于 为的切线 平分 (2)解: 是的直径 23、(本小题满分12分)已知抛物线的

13、对称轴为直线,其图像与轴相交于、两点,与轴交于点。(1)求,的值; (2)直线与轴交于点。 如图1,若轴,且与线段及抛物线分别相交于点、,点关于直线的对称点为,求四边形面积的最大值; 如图2,若直线与线段相交于点,当时,求直线的表达式。H 图1 图2 考点: 三角形的相似,抛物线的图象与性质。解析:解:(1)由题可知 解得(2)由题可知, 由(1)可知,:设,则 当时,四边形的面积最大,最大值为由(1)可知由可得 由,可得作于点,设,则,即 解得 :24、(本小题满分12分)在平面直角坐标系中,已知,动点在的图像上运动(不与重合),连接,过点作,交轴于点,连接。 (1)求线段长度的取值范围;

14、(2)试问:点运动过程中,是否问定值?如果是,求出该值;如果不是,请说明理由。 (3)当为等腰三角形时,求点的坐标。考点: 三角形的相似,三角函数,四点共圆。解析:解:(1)作,则点在的图像上, (2)法一:(共圆法)当点在第三象限时,由 可得、四点共圆当点在第一象的线段上时,由 可得、四点共圆,又此时当点在第一象限的线段的延长线上时,由 可得、四点共圆 法二:(相似法) 如图设直线与交于点 当点在第三象限时,由 可得 当点在第一象限且点在延长线上时,由 可得 当点在第一象限且点在延长线上时,由 可得 (3)设, 则: :,当时, 则整理得: 解得:, 当时,则整理得: 解得:或当时,点与重合

15、,舍去, 当时,则整理得:解得:初中数学重要公式1、几何计数:(1)当一条直线上有n个点时,在这条直线上存在_ _ 条线段(2)平面内有n个点,过两点确定一条直线,在这个平面内最多存在_ _条直线(3)如果平面内有n条直线,最多存在_ _个交点(4)如果平面内有n条直线,最多可以将平面分成_ _部分(5)、有公共端点的n条射线(两条射线的最大夹角小于平角),则存在_ _个角2、ABCD,分别探讨下面四个图形中APC与PAB、PCD的关系。3、全等三角形的判定方法:a三条边对应相等的两个三角形全等(简记为_)b两个角和它们的夹边对应相等的两个三角形全等(简记为_)c两个角和其中一个角的对边对应相

16、等的两个三角形全等(简记为_)d两条边和它们的夹角对应相等的两个三角形全等(简记为_)e斜边和一条直角边对应相等的两个直角三角形全等(简记为_)4、坐标系中的位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于_5、n边形的内角和等于_;多边形的外角和都等于_6、在四边形的四个内角中,最多能有_3_个钝角,最多能有_3_个锐角如果一个多边形的边数增加1,那么这个多边形的内角和增加_180_度4n边形有_条对角线5、用_、_完全相同的一种或几种_进行拼接,彼此之间不留空隙,不重叠的铺成一片,就是平面图形的_. 注意 要实现平面图形的镶嵌,必须

17、保证每个拼接点处的角恰好能拼成_.总结 平面图形的镶嵌的常见形式(1)用同一种正多边形可以镶嵌的只有三种情况:_个正三角形或_个正四边形或_个正六边形(2)用两种正多边形镶嵌用正三角形和正四边形镶嵌:_个正三角形和_个正四边形;用正三角形和正六边形镶嵌:用_个正三角形和_个正六边形或者用_个正三角形和_个正六边形;用正四边形和正八边形镶嵌:用_个正四边形和_个正八边形可以镶嵌(3)用三种不同的正多边形镶嵌用正三角形、正四边形和正六边形进行镶嵌,设用m块正三角形、n块正方形、k块正六边形,则有60m90n120k360,整理得_,因为m、n、k为整数,所以m_,n_,k_,即用_块正方形,_块正

18、三角形和_块正六边形可以镶嵌6、梯形常用辅助线做法:7、如图:RtABC中,ACB90o,CDAB于D,则有:(1)、ACDB DCBA(2) 由RtABC RtACD得到由RtABC RtCBD得到由RtACD RtCBD得到(3)、由等积法得到ABCD =ACBC8、若将半圆换成正三角形、正方形或任意的相似形,S1S2S3都成立。9、在解直角三角形时常用词语:1仰角和俯角 在视线与水平线所成的角中,视线在水平线上方的叫做_,视线在水平线下方的叫做_. 2坡度和坡角 通常把坡面的铅直高度h和水平宽度l之比叫_,用字母i表示,即i_,把坡面与水平面的夹角叫做_, 记作,于是i_tan,显然,坡

19、度越大,角越大,坡面就越陡. 10正多边形的有关计算边长:an2Rnsineq f(180,n) 周长:Pnnan边心距:rnRncoseq f(180,n) 面积:Sneq f(1,2)anrnn内角:eq f(n2180,n) 外角:eq f(360,n) 中心角:eq f(360,n)11、特殊锐角三角函数值SinCostan1Cot112、某些数列前n项之和1+2+3+4+5+6+7+8+9+n=n(n+1)/21+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1)13、平行线段成比例定理(1)平行线分线段成比例定理:三条平行

20、线截两条直线,所得的对应线段成比例。如图:abc,直线l1与l2分别与直线a、b、c相交与点A、B、C和D、E、F,则有。(2)推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。如图:ABC中,DEBC,DE与AB、AC相交与点D、E,则有:14、极差、方差与标准差计算公式:极差:用一组数据的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,即:极差=最大值-最小值;方差:数据、, 的方差为,则=标准差:数据、, 的标准差,则=一组数据的方差越大,这组数据的波动越大。15、求抛物线的顶点、对称轴的方法 公式法:,顶点是,对称轴是直线。

21、配方法:运用配方的方法,将抛物线的解析式化为的形式,得到顶点为(,),对称轴是直线。 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,对称轴与抛物线的交点是顶点。 若已知抛物线上两点(及y值相同),则对称轴方程可以表示为:16、直线与抛物线的交点 轴与抛物线得交点为(0, )。 抛物线与轴的交点。 二次函数的图像与轴的两个交点的横坐标、,是对应一元二次方程的两个实数根.抛物线与轴的交点情况可以由对应的一元二次方程的根的判别式判定: a有两个交点()抛物线与轴相交; b有一个交点(顶点在轴上)()抛物线与轴相切; c没有交点()抛物线与轴相离。 平行于轴的直线与抛物线的交点 同一样可能

22、有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为,则横坐标是的两个实数根。 一次函数的图像与二次函数的图像的交点,由方程组 的解的数目来确定:a方程组有两组不同的解时与有两个交点;b方程组只有一组解时与只有一个交点;c方程组无解时与没有交点。 抛物线与轴两交点之间的距离:若抛物线与轴两交点为,则 图形的定义、性质、判定一、角平分线性质:角的平分线上的点到角两边的_相等判定:角的内部到角的两边的距离相等的点在_上二、线段垂直平分线1性质:线段的垂直平分线上的点与这条线段两个端点的距离_2判定:与一条线段两个端点距离相等的点,在这条线段的_上点拨 线段的垂直平分线可以

23、看作到线段两个端点距离相等的所有点的集合三、等腰三角形定义、性质:1定义:有两_相等的三角形是等腰三角形2性质:(1)等腰三角形两个腰_(2)等腰三角形的两个底角_(简写成等边对等角)(3)等腰三角形的顶角_,底边上的_,底边上的_互相重合(4)等腰三角形是轴对称图形,有_条对称轴注意 (1)等腰三角形两腰上的高相等(2)等腰三角形两腰上的中线相等(3)等腰三角形两底角的平分线相等(4)等腰三角形一腰上的高与底边的夹角等于顶角的一半(5)等腰三角形顶角的外角平分线与底边平行(6)等腰三角形底边上任意一点到两腰的距离之和等于一腰上的高(7)等腰三角形底边延长线上任意一点到两腰的距离之差等于一腰上

24、的高判定:1定义法2如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)注意 (1)一边上的高与这边上的中线重合的三角形是等腰三角形. (2)一边上的高与这边所对角的平分线重合的三角形是等腰三角形. (3)一边上的中线与三角形中这边所对角的平分线重合的三角形是等腰三角形四、等边三角形1等边三角形的性质(1)等边三角形的三条边都相等(2)等边三角形的三个内角都相等并且每一个角都等于60.(3)等边三角形是轴对称图形,并且有_条对称轴注意 等边三角形具有等腰三角形的所有性质2等边三角形的判定(1)三条边相等的三角形叫做等边三角形(2)三个角相等的三角形是等边三角形(3)有

25、一个角等于60的_三角形是等边三角形五、直角三角形1定义:有一个角是直角的三角形是直角三角形2直角三角形的性质(1)直角三角形的两个锐角_(2)直角三角形的斜边上的中线等于斜边的_(3)在直角三角形中,30的角所对的边等于斜边的_(4)在直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30度。(5)、勾股定理:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么 a2b2_.3直角三角形的判定(1)、判定:如果一个三角形中有两个角互余,那么这个三角形是_三角形(2)、如果三角形的三边长分别为a、b、c,满足a2b2c2,那么这个三角形是_三角形(3)、如果一个三角形一条

26、边上的中线等于这条边的一半,那么这个三角形是直角三角形。(4)、直径所对的圆周角是90度。(5)、如果一个三角形的外心在三角形的一条边上,那么这个三角形是直角三角形。(6)、圆的切线垂直于过切点的半径。六、相似三角形1相似三角形的对应角_,对应边的比_相似多边形对应角相等,对应边的比_相似多边形周长的比等于_相似多边形面积的比等于_的平方2相似三角形的周长比等于_3相似三角形的面积比等于相似比的_注意 相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比判定定理:1如果两个三角形的三组对应边的比相等,那么这两个三角形相似2如果两个三角形的两组对应边的比相等,并且夹角相等,那么这两

27、个三角形相似3如果一个三角形的两个角分别与另一个三角形的两个角对应相等,那么这两个三角形相似. 注意 直角三角形被斜边上的高分成的两个直角三角形与原直角三角形都相似七、位似图形1定义:两个多边形不仅相似,而且对应点的连线相交于一点,对应边互相平行,像这样的两个图形叫做位似图形,这个点叫做.注意 位似图形是相似图形的一个特例,位似图形一定是相似图形,相似图形不一定是位似图形2位似图形的性质(1)位似图形上任意一对对应点到位似中心的距离之比等于_(2)对应线段互相_3坐标系中的位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,位似比为k,那么位似图形对应点的坐标的比等于_八、平行四边形

28、1定义:两组对边分别_的四边形是平行四边形;2平行四边形的性质(1)平行四边形的两组对边分别_;(2)平行四边形的两组对边分别_;(3)平行四边形的两组对角分别_;(4)平行四边形的对角线互相_ .总结 平行四边形是中心对称图形,它的对称中心是两条对角线的交点 判定:1定义法2两组对角分别_的四边形是平行四边形3两组对边分别_的四边形是平行四边形4对角线_的四边形是平行四边形5一组对边平行且_的四边形是平行四边形九、矩形1矩形的定义有一个角是直角的_是矩形2矩形的性质(1)矩形对边_;(2)矩形四个角都是_角(或矩形四个角都相等);(3)矩形对角线_、_.总结 (1)矩形的两条对角线把矩形分成四个面积相等的等腰三角形;3矩形的判定(1)定义法; (2)有三个角是直角的_是矩形;(3)对角线相等的_是矩形. 十、菱形1菱形的定义一组邻边相等的_是菱形2菱形的性质(1)菱形的四条边都_;(2)菱形的对角线互相_,互相_,并且每一条对角线平分一组对角;(3)菱形是中心对称图形,它的对称中心是两条对角线的交点;菱形也是轴对称图形,两条对角线所在的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论