版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为( )A-7B7C-10D102已知圆内接正三角形的面积为3,则边心距是()A2B1CD3已知(,),下列变
2、形错误的是( )ABCD4方程x(x1)0的根是()A0B1C0或1D无解5河堤横断面如图所示,堤高BC5米,迎水坡AB的坡比1:,则AC的长是( )A10米B米C15米D米6若,则下列各式一定成立的是( )ABCD7如图是一个可以自由转动的转盘,转盘分成黑、白两种颜色指针的位置固定,转动的转盘停止后,指针恰好指向白色扇形的穊率为(指针指向OA时,当作指向黑色扇形;指针指OB时,当作指向白色扇形),则黑色扇形的圆心角AOB()A40B45C50D608点P(6,-8)关于原点的对称点的坐标为( )A(-6,8)B(6,-8)C(8,-6)D(8,-6)9某气球内充满了一定质量的气体,当温度不变
3、时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应( )A不小于B大于C不小于D小于10如图,AOB缩小后得到COD,AOB与COD的相似比是3,若C(1,2),则点A的坐标为()A(2,4)B(2,6)C(3,6)D(3,4)二、填空题(每小题3分,共24分)11如图,平面直角坐标系中,P与x轴分别交于A、B两点,点P的坐标为(3,1),AB2 将P沿着与y轴平行的方向平移,使P与轴相切,则平移距离为_ 12已知,若是一元二次方程的两个实数根,则的值是_13若关于x的一元二次方程kx22x1
4、0有两个不相等的实数根,则k的取值范围是_14在ABC中,若A,B满足|cosA|(sinB)20,则C_15计算_.16在平面直角坐标系中,点的坐标分别是,以点为位似中心,相们比为,把缩小,得到,则点的对应点的坐标为_17如图,在等腰直角ABC中,C90,将ABC绕顶点A逆时针旋转80后得到ABC,则CAB的度数为_18如图,中,边上的高长为作的中位线,交于点;作的中位线,交于点;顺次这样做下去,得到点,则_三、解答题(共66分)19(10分)解一元二次方程:20(6分)如图,在直角坐标系中,矩形的顶点、分别在轴和轴正半轴上,点的坐标是,点是边上一动点(不与点、点重合),连结、,过点作射线交
5、的延长线于点,交边于点,且,令,.(1)当为何值时,?(2)求与的函数关系式,并写出的取值范围;(3)在点的运动过程中,是否存在,使的面积与的面积之和等于的面积.若存在,请求的值;若不存在,请说明理由.21(6分)小明和小亮利用三张卡片做游戏,卡片上分别写有A,B,B这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,如果两次摸到卡片字母相同则小明胜,否则小亮胜,这个游戏对双方公平吗?请说明现由22(8分)如图,是的外接圆,为直径,的平分线交于点,过点的切线分别交,的延长线于点,连接(1)求证:;(2)若,求的半径23(8分)一艘观光游船从港口A以北偏东60
6、的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37方向,马上以40海里每小时的速度前往救援,(1)求点C到直线AB的距离;(2)求海警船到达事故船C处所需的大约时间(温馨提示:sin530.8,cos530.6)24(8分)某商场经营一种新上市的文具,进价为元/件,试营销阶段发现:当销售单价为元/件时,每天的销售量是件;销售单价每上涨一元,每天的销售量就减少件,(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大?25
7、(10分)如图,已知点是坐标原点,两点的坐标分别为,. (1)以点为位似中心在轴的左侧将放大到原图的2倍(即新图与原图的相似比为2),画出对应的;(2)若内部一点的坐标为,则点对应点的坐标是_;(3)求出变化后的面积 _ .26(10分)如图,在ABC 中,ABAC,M 为BC的中点,MHAC,垂足为 H(1)求证:;(2)若 ABAC10,BC1求CH的长参考答案一、选择题(每小题3分,共30分)1、B【分析】把一元二次方程根的个数问题,转化为二次函数的图象与直线y=-m的图象的交点问题,然后结合图形即可解答【详解】解:将变形可得:关于的一元二次方程有实数根,二次函数的图象与直线y=-m的图
8、象有交点如下图所示,易得当-m-7,二次函数的图象与直线y=-m的图象有交点解得:m7故的最大值为7故选B【点睛】此题考查的是二次函数和一元二次方程的关系,掌握将一元二次方程根的情况转化为二次函数图象与直线图象之间的交点问题和数形结合的数学思想是解决此题的关键2、B【分析】根据题意画出图形,连接AO并延长交BC于点D,则ADBC,设OD=x,由三角形重心的性质得AD=3x, 利用锐角三角函数表示出BD的长,由垂径定理表示出BC的长,然后根据面积法解答即可【详解】如图, 连接AO并延长交BC于点D,则ADBC,设OD=x,则AD=3x, tanBAD=,BD= tan30AD=x,BC=2BD=
9、2x, ,2x3x=3,x1所以该圆的内接正三边形的边心距为1,故选B【点睛】本题考查正多边形和圆,三角形重心的性质,垂径定理,锐角三角函数,面积法求线段的长,解答本题的关键是明确题意,求出相应的图形的边心距3、B【分析】根据两内项之积等于两外项之积对各项分析判断即可得解.【详解】解:由,得出,3b=4a,A.由等式性质可得:3b=4a,正确;B.由等式性质可得:4a=3b,错误;C. 由等式性质可得:3b=4a,正确;D. 由等式性质可得:4a=3b,正确.故答案为:B.【点睛】本题考查的知识点是等式的性质,熟记等式性质两内项之积等于两外项之积是解题的关键.4、C【分析】解一元二次方程时,需
10、要把二次方程化为两个一元一次方程,此题可化为:或,解此两个一次方程即可.【详解】,或, ,.故选.【点睛】此题虽不难,但是告诉了学生求解的一个方法,高次的要化为低次的,多元得要化为一元的.5、B【解析】RtABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长【详解】RtABC中,BC=5米,tanA=1:;AC=BCtanA=5米;故选:B【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力6、B【分析】由 等式的两边都除以,从而可得到答案【详解】解: 等式的两边都除以:, 故选B【点睛】本题考查的是把等积式化为比例式的方法,考查的是比的
11、基本性质,等式的基本性质,掌握以上知识是解题的关键7、B【分析】根据针恰好指向白色扇形的概率得到黑、白两种颜色的扇形的面积比为1:7,计算即可【详解】解:指针恰好指向白色扇形的穊率为,黑、白两种颜色的扇形的面积比为1:7,AOB36045,故选:B【点睛】本题考查的知识点是求圆心角的度数,根据概率得出黑、白两种颜色的扇形的面积比为1:7是解此题的关键8、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P(-x,-y),可以直接选出答案【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标
12、是(-6,8)故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反9、C【解析】由题意设设,把(1.6,60)代入得到k=96,推出,当P=120时,由此即可判断【详解】因为气球内气体的气压p(kPa)是气体体积V()的反比例函数,所以可设,由题图可知,当时,所以,所以.为了安全起见,气球内的气压应不大于120kPa,即,所以.故选C.【点睛】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.10、C【解析】根据位似变换的性质计算即可【详解】由题意得,点A与点C是对应点,AOB与COD的相似比是3,点A的坐标为(13,
13、23),即(3,6),故选:C【点睛】本题考查的是位似变换的性质,掌握在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或k是解题的关键二、填空题(每小题3分,共24分)11、1或1【分析】过点P作PCx轴于点C,连接PA,由垂径定理得P的半径为2,因为将P沿着与y轴平行的方向平移,使P与轴相切,分两种情况进行讨论求值即可由【详解】解:过点P作PCx轴于点C,连接PA,AB,点P的坐标为(1,1),PC=1,将P沿着与y轴平行的方向平移,使P与轴相切,当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距离只需为1即可;当沿着
14、y轴正方向移动,由可知平移的距离为即可故答案为1或1【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可12、6【解析】根据得到a-b=1,由是一元二次方程的两个实数根结合完全平方公式得到,根据根与系数关系得到关于k的方程即可求解.【详解】,故a-b=1是一元二次方程的两个实数根,a+b=-5,ab=k,=1即25-4k=1,解得k=6,故填:6.【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知因式分解、根与系数的关系运用.13、k1且k1【解析】由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式1且k1,则可求得k
15、的取值范围【详解】解:关于x的一元二次方程kx22x11有两个不相等的实数根,b24ac(2)24k(1)4+4k1,k1,x的一元二次方程kx22x11k1,k的取值范围是:k1且k1故答案为:k1且k1【点睛】此题考查了一元二次方程根的判别式的应用此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式的关系:(1)1方程有两个不相等的实数根;(2)=1方程有两个相等的实数根;(3)1方程没有实数根14、75【解析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出A及B的度数,利用三角形的内角和定理可得出C的度数【详解】|cosA|(sinB)20,cosA=,sinB
16、=,A=60,B=45,C=180-A-B=75,故答案为75.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值15、【分析】根据负整数指数幂的计算法则及立方根的定义进行计算即可【详解】解:原式=18=1故答案为:1【点睛】本题考查实数的运算,属于常考基础题,明确负整数指数幂的计算法则及立方根的定义是解题的关键16、或【解析】利用位似图形的性质可得对应点坐标乘以和-即可求解.【详解】解:以点为位似中心,相似比为,把缩小,点的坐标是则点的对应点的坐标为或,即或,故答案为:或【点睛】本题考查的是位似图形,熟练
17、掌握位似变换是解题的关键.17、125【分析】根据等腰直角三角形的性质得到CAB45,根据旋转的性质得到BAB80,结合图形计算即可【详解】解:ABC是等腰直角三角形,CAB45,由旋转的性质可知,BAB80,CABCAB+BAB125,故答案为:125【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.18、或【分析】根据中位线的性质,得出的关系式,代入即可【详解】根据中位线的性质故我们可得当均成立,故关系式正确故答案为:或【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键三、解答题(共66分)19、,.【分析】利用十字相乘法即可解方程.【详解】,(x+1)(2x-
18、5)=0,.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适合的方法求解是解题的关键.20、(1)当时,;(2)();(3)存在,.【分析】(1)由题意可知,当OPAP时,即,于是解得x值;(2)根据已知条件利用两角对应相等两个三角形相似,证明三角形OCM和三角形PCO相似,得出对应边成比例即可得出结论;(3)假设存在x符合题意. 过作于点,交于点,由与面积之和等于的面积,.然后求出ED,EF的长,再根据三角形相似:,求出MP的长,进而由上题的关系式求出符合条件的x.【详解】解:(1)证明三角形OPC和三角形PAB相似是解决问题的关键,由题意知,BCOA,,.,,即,解得(不合题意,舍
19、去). 当时,;(2)由题意可知,.(已知),. ,对应边成比例:,即. ,因为点是边上一动点(不与点、点重合),且满足,所以的取值范围是.(3)假设存在符合题意. 如图所示,过作于点,交于点, 则.与面积之和等于的面积,. . ,. . 即,解得. 由(2)得,所以. 解得(不合题意舍去). 在点的运动过程中存在x,,使与面积之和等于的面积,此时.【点睛】1.相似三角形的判定与性质;2.矩形性质.21、这个游戏对双方不公平,理由见解析.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:共有9种等可
20、能的结果,两次摸到卡片字母相同的有5种等可能的结果,两次摸到卡片字母相同的概率为: ;小明胜的概率为 ,小亮胜的概率为 , ,这个游戏对双方不公平.故答案为这个游戏对双方不公平,理由见解析.【点睛】本题考查了树状图法求概率,判断游戏的公平性.22、(1)见解析;(2)1【解析】(1)连结OD,由圆内的等腰三角形和角平分线可证得,再由切线的性质即可证得结论;(2)记与交于点,由中位线和矩形的性质可得OG和DG的长后相加即可求得的半径【详解】(1)证明:如图,连接,是的切线,且点在上,平分,;(2)解:记与交于点,由(1)知,即O为AB中点,AB为直径,ACB=90,则FCB=90,由(1)知,四
21、边形AFDG为矩形,即的半径为1【点睛】本题主要考查了切线的性质及圆周角定理,熟练掌握过切点的半径与切线垂直是解题的关键,同时也要注意角平分线、中位线和矩形等知识的运用23、(1)40海里;(2)小时【分析】(1)作CDAB,在RtACD中,由CAD30知CDAC,据此可得答案;(2)根据BC求得BC的长,继而可得答案【详解】解:(1)如图,过点C作CDAB交AB延长线于D在RtACD中,ADC90,CAD30,AC80海里,点C到直线AB距离CDAC40(海里)(2)在RtCBD中,CDB90,CBD903753,BC50(海里),海警船到达事故船C处所需的时间大约为:5040(小时)【点睛】此题主要考查解直角三角形的应用,解题的关键是熟知三角函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洗涤剂的课程设计
- 家居建材行业销售员培训心得
- 班级心理健康活动的设计计划
- 【八年级下册历史】第1课 中华人民共和国成立 同步练习
- 农业行业话务员工作心得
- 化工行业销售工作总结
- 2024年秋季开学第一课教案
- 2024年萍乡卫生职业学院单招职业技能测试题库标准卷
- 2024年牛郎织女教案 (一)
- 2025届武威市高三语文(上)期末联考试卷及答案解析
- 护理人才梯队建设规划方案
- 睡眠区布局设计打造舒适宜人的睡眠环境
- 建筑设计行业项目商业计划书
- 慢性病防治健康教育知识讲座
- 骶尾部藏毛疾病诊治中国专家共识(2023版)
- 【高新技术企业所得税税务筹划探析案例:以科大讯飞为例13000字(论文)】
- 幽门螺旋杆菌
- 智慧农业利用技术提高农业可持续发展的方案
- 制冷压缩机安全操作规程范文
- 初中历史考试试题答题卡模版
- 《草图大师建模》授课计划+教案
评论
0/150
提交评论