版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1已知二次函数yax2+bx+c(a0)的对称轴为直线x1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:abc0;2ab0;一元二次方程ax2+bx+c0的两
2、个根是3和1;当y0时,3x1;当x0时,y随x的增大而增大:若点E(4,y1),F(2,y2),M(3,y3)是函数图象上的三点,则y1y2y3,其中正确的有()个A5B4C3D22布袋中有红、黄、蓝三种颜色的球各一个,从中摸出一个球之后不放回布袋,再摸第二个球,这时得到的两个球的颜色中有“一红一黄”的概率是()ABCD3下列函数属于二次函数的是ABCD4化简的结果是()A2B4C2D45下列四组、的线段中,不能组成直角三角形的是( )A,B,C,D,6如图,正五边形内接于,为上的一点(点不与点重合),则的度数为( )ABCD7点P(6,-8)关于原点的对称点的坐标为( )A(-6,8)B(
3、6,-8)C(8,-6)D(8,-6)8关于x的方程ax2+bx+c0是一元二次方程,则满足()Aa0Ba0Ca0D全体实数9二次函数的图象如图所示,若关于的一元二次方程有实数根,则的最大值为( )A-7B7C-10D1010孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长尺,绳子长尺,根据题意列方程组正确的是( )ABCD二、填空题(每小题3分,共24分)11已知线段a,b,c,d成比例线段,其中a=3cm,b=4cm,c=6
4、cm,则d=_cm;12某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是21,则每个支干长出_13关于的方程的一个根是,则它的另一个根是_14已知锐角,满足tan=2,则sin=_15计算_.16抛物线y(x2)2的顶点坐标是_17抛物线关于x轴对称的抛物线解析式为_18如果不等式组的解集是xa4,则a的取值范围是_.三、解答题(共66分)19(10分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式+36,而其每千克成本(元)与销售月份(月)满
5、足的函数关系如图所示:(1)试确定、的值;(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;(3)几月份出售这种水产品每千克利润最大?最大利润是多少?20(6分)如图,在RtABC中,ABAC,D、E是斜边BC上的两点,EAD45,将ADC绕点A顺时针旋转90,得到AFB,连接EF(1)求证:EFED;(2)若AB2,CD1,求FE的长21(6分)某便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能够售出240件经过调查发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能够多售出40件(1)如果降价,那么每件要降价多少元才能使销售盈利
6、达到1960元?(2)如果涨价,那么每件要涨价多少元能使销售盈利达到1980元?22(8分)如图,在中,是边上任意一点(点与点,不重合),以为一直角边作,连接,.若和是等腰直角三角形.(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;(2)现将图中的绕着点顺时针旋转,得到图,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.23(8分)如图,在梯形中,点在边上,点是射线上一个动点(不与点、重合),联结交射线于点,设,.(1)求的长;(2)当动点在线段上时,试求与之间的函数解析式,并写出函数的定义域;(3)当动点运动时,直线与直线的夹角等于,请直接写出这时线
7、段的长.24(8分)解方程:x25 = 4x25(10分)某市某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)?(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少(画出树状图或列表)26(10分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销
8、售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量(千克)与销售单价(元/千克)之间的函数关系如图所示. (1)求与的函数关系式,并写出的取值范围; (2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少? (3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.参考答案一、选择题(每小题3分,共30分)1、C【分析】根据抛物线的开口方向、对称轴、顶点坐标、增减性逐个进行判断,得出答案【详解】由抛物线的开口向上,可得a0,对称轴是x1,可得a、b同号,即b0,抛物线与y轴交在y轴的负半轴,
9、c0,因此abc0,故不符合题意;对称轴是x1,即1,即2ab0,因此符合题意;抛物线的对称轴为x1,与x轴的一个交点B的坐标为(1,0),可知与x轴的另一个交点为(3,0),因此一元二次方程ax2+bx+c0的两个根是3和1,故符合题意;由图象可知y0时,相应的x的取值范围为x3或x1,因此不符合题意;在对称轴的右侧,y随x的增大而增大,因此当x0时,y随x的增大而增大是正确的,因此符合题意;由抛物线的对称性,在对称轴的左侧y随x的增大而减小,42,y1y2,(3,y3)l离对称轴远因此y3y1,因此y3y1y2,因此不符合题意;综上所述,正确的结论有3个,故选:C【点睛】考查二次函数的图象
10、和性质,二次函数与一元二次方程的关系,熟练掌握a、b、c的值决定抛物线的位置,抛物线的对称性是解决问题的关键2、C【解析】解:画树状图如下:一共有6种情况,“一红一黄”的情况有2种,P(一红一黄)=故选C3、A【分析】一般地,我们把形如y=ax+bx+c(其中a,b,c是常数,a0)的函数叫做二次函数.【详解】由二次函数的定义可知A选项正确,B和D选项为一次函数,C选项为反比例函数.【点睛】了解二次函数的定义是解题的关键.4、A【解析】根据最简二次根式的定义进行化简即可.【详解】故选:A.【点睛】本题考查二次根式的化简,熟练掌握最简二次根式的定义是关键.5、B【分析】根据勾股定理的逆定理判断三
11、角形三边是否构成直角三角形,依次计算判断得出结论【详解】A.,A选项不符合题意B.,B选项符合题意C.,C选项不符合题意D.,D选项不符合题意故选:B【点睛】本题考查三角形三边能否构成直角三角形,熟练逆用勾股定理是解题关键6、B【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72,即COD=72,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故CPD=,故选B.【点睛】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.7、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对
12、称点是P(-x,-y),可以直接选出答案【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8)故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反8、A【解析】根据一元二次方程的定义求解一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为1【详解】由于关于x的方程ax2+bx+c1是一元二次方程,所以二次项系数不为零,即a1故选:A【点睛】此题考查一元二次方程的定义,熟记一元二次方程满足的条件即可正确解题.9、B【分析】把一元二次方程根的个数问题,转化
13、为二次函数的图象与直线y=-m的图象的交点问题,然后结合图形即可解答【详解】解:将变形可得:关于的一元二次方程有实数根,二次函数的图象与直线y=-m的图象有交点如下图所示,易得当-m-7,二次函数的图象与直线y=-m的图象有交点解得:m7故的最大值为7故选B【点睛】此题考查的是二次函数和一元二次方程的关系,掌握将一元二次方程根的情况转化为二次函数图象与直线图象之间的交点问题和数形结合的数学思想是解决此题的关键10、A【解析】本题的等量关系是:木长绳长,绳长木长,据此可列方程组即可.【详解】设木条长为尺,绳子长为尺,根据题意可得:.故选:.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关
14、键是明确题意,列出相应的二元一次方程组.二、填空题(每小题3分,共24分)11、3【详解】根据题意得:a:b=c:d,a=3cm,b=4cm,c=6cm,3:4=6:d,d=3cm考点:3比例线段;3比例的性质12、4个小支干【分析】设每个支干长出x个小支干,根据主干、支干和小分支的总数是21,即可得出关于x的一元二次方程,解之取其正值即可得出结论【详解】解:设每个支干长出x个小支干,根据题意得:,解得:舍去,故答案为4个小支干【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键13、6【分析】根据一元二次方程的根与系数的关系解答即可.【详解】解:设方程的另一个
15、根是,则,解得:.故答案为:6.【点睛】本题考查了一元二次方程根与系数的关系,属于基础题型,熟练掌握一元二次方程的两根之和与两根之积与其系数的关系是解此类题的关键.14、 【解析】分析:根据锐角三角函数的定义,可得答案详解:如图,由tan=2,得a=2b,由勾股定理,得: c=b,sin= 故答案为点睛:本题考查了锐角三角函数,利用锐角三角函数的定义解题的关键15、【分析】根据负整数指数幂的计算法则及立方根的定义进行计算即可【详解】解:原式=18=1故答案为:1【点睛】本题考查实数的运算,属于常考基础题,明确负整数指数幂的计算法则及立方根的定义是解题的关键16、(2,0)【分析】已知条件的解析
16、式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【详解】解:抛物线解析式为y(x2)2,二次函数图象的顶点坐标是(2,0)故答案为(2,0)【点睛】本题的考点是二次函数的性质.方法是根据顶点式的坐标特点写出答案.17、【分析】由关于x轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线的顶点关于x轴对称的顶点,关于x轴对称,则开口方向与原来相反,得出二次项系数,最后写出对称后的抛物线解析式即可【详解】解:抛物线的顶点为(3,-1),点(3,-1)关于x轴对称的点为(3,1),又关于x轴对称,则开口方向与原来相反,所以 ,抛物线关于x轴对称的抛物线解析式为.故答案为:.【点睛
17、】本题考查了二次函数的图象与几何变换,解题的关键是抓住关于x轴对称点的特点18、a3.【分析】根据口诀“同小取小”可知不等式组的解集,解这个不等式即可【详解】解这个不等式组为xa4,则3a+2a4,解这个不等式得a3故答案a3.【点睛】此题考查解一元一次不等式组,掌握运算法则是解题关键三、解答题(共66分)19、(1),;(2);(3)6月份出售这种水产品每千克利润最大,最大利润是每千克11元【分析】(1)把图中的已知坐标代入解析式,解方程组求出b,c即可;(2)由题意得,化简函数关系式即可;(3)已知y与x的函数关系式,用配方法化为顶点式,根据抛物线的性质即可求出最大值【详解】解:(1)根据
18、图象,将和分别代入解析式得:解得:,;(2)由题意得:,(3)将化为顶点式得:,抛物线开口向下,当时,二次函数取得最大值,此时y=11,所以6月份出售这种水产品每千克利润最大,最大利润是每千克11元。【点睛】本题考查学生利用二次函数解决实际问题的能力求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法20、(1)见解析;(2)EF.【解析】(1)由旋转的性质可求FAEDAE45,即可证AEFAED,可得EFED;(2)由旋转的性质可证FBE90,利用勾股定理和方程的思想可求EF的长【详解】(1)BAC90,EAD45,BAE+DAC45
19、,将ADC绕点A顺时针旋转90,得到AFB,BAFDAC,AFAD,CDBF,ABFACD45,BAF+BAE45FAE,FAEDAE,ADAF,AEAE,AEFAED(SAS),DEEF(2)ABAC2,BAC90,BC4,CD1,BF1,BD3,即BE+DE3,ABFABC45,EBF90,BF2+BE2EF2,1+(3EF)2EF2,EF【点睛】本题考查了旋转的性质,等腰直角三角形的性质,全等三角形的判定和性质,勾股定理等知识,利用方程的思想解决问题是本题的关键21、(1)每件要降价1元才能使销售盈利达到1960元;(2)每件要涨价1元或3元能使销售盈利达到1980元【分析】(1)设每件
20、要降价x元,根据盈利=每件的利润销售量即可列出关于x的方程,解方程即可求出结果;(2)设每件要涨价y元,根据盈利=每件的利润销售量即可列出关于y的方程,解方程即可求出结果【详解】解:(1)设每件要降价x元,根据题意,得,解得:,答:每件要降价1元才能使销售盈利达到1960元(2)每件要涨价y元,根据题意,得,解得:,答:每件要涨价1元或3元能使销售盈利达到1980元【点睛】本题考查了一元二次方程的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键22、(1)BE=AD,BEAD ;(2)BE=AD,BEAD仍然成立,理由见解析【分析】(1)由CA=CB,CE=CD,ACB=90易证BC
21、EACD,所以BE=AD,BEC=ADC,又因为EBC+BEC=90,所以EBC+ADC=90,即BEAD;(2)成立设BE与AC的交点为点F,BE与AD的交点为点G,易证ACDBCE得到AD=BE,CAD=CBE再根据等量代换得到AFG+CAD=90即BEAD【详解】(1)BE=AD,BEAD;在BCE和ACD中,BCEACD(SAS),BE=AD,BEC=ADC,EBC+BEC=90,EBC+ADC=90,BEAD.故答案为:BE=AD,BEAD.(2)BE=AD,BEAD仍然成立 设BE与AC的交点为F,BE与AD的交点为G,如图,.在和中,. ,BEAD【点睛】本题考查了旋转的性质,全
22、等三角形的判定与性质,等腰直角三角形的性质,熟练掌握性质定理是解题的关键.23、(1);(1);(3)线段的长为或13【分析】(1)如图1中,作AHBC于H,解直角三角形求出EH,CH即可解决问题(1)延长AD交BM的延长线于G利用平行线分线段成比例定理构建关系式即可解决问题(3)分两种情形:如图3-1中,当点M在线段DC上时,BNE=ABC=45如图3-1中,当点M在线段DC的延长线上时,ANB=ABE=45,利用相似三角形的性质即可解决问题【详解】:(1)如图1中,作AHBC于H,ADBC,C=90, AHC=C=D=90,四边形AHCD是矩形,AD=CH=1,AH=CD=3,tanAEC=3,=3,EH=1,CE=1+1=3,BE=BC-CE=5-3=1(1)延长,交于点,AGBC,.解得:(3)如图3-1中,当点M在线段DC上时,BNE=ABC=45,则有,解得:如图3-1中,当点M在线段D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 洗涤剂的课程设计
- 家居建材行业销售员培训心得
- 班级心理健康活动的设计计划
- 【八年级下册历史】第1课 中华人民共和国成立 同步练习
- 农业行业话务员工作心得
- 化工行业销售工作总结
- 2024年秋季开学第一课教案
- 2024年萍乡卫生职业学院单招职业技能测试题库标准卷
- 2024年牛郎织女教案 (一)
- 2025届武威市高三语文(上)期末联考试卷及答案解析
- 广东海洋大学大数据库课程设计
- 商业发票INVOICE模板
- (完整版)食堂管理制度及流程
- 超声波焊接作业指导书(共8页)
- 某医院后备人才梯队建设方案
- 二年级上册英语教案Unit6 Lesson22︱北京课改版
- 桂枝加龙骨牡蛎汤_金匮要略卷上_方剂加减变化汇总
- 电机与电气控制技术PPT课件
- 废弃钻井泥浆和压裂返排液无害化处理研究报告
- 论文-基于单片机的抢答器.doc
- 《AFM简介实验》ppt课件
评论
0/150
提交评论