2022年甘肃省武威第十七中学数学九年级第一学期期末联考模拟试题含解析_第1页
2022年甘肃省武威第十七中学数学九年级第一学期期末联考模拟试题含解析_第2页
2022年甘肃省武威第十七中学数学九年级第一学期期末联考模拟试题含解析_第3页
2022年甘肃省武威第十七中学数学九年级第一学期期末联考模拟试题含解析_第4页
2022年甘肃省武威第十七中学数学九年级第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1已知关于x的方程x2+bx+a0有一个根是a(a0),则ab的值为()Aab1Bab1Cab0Dab12抛物线y=x2的图象向左平移2个单位,再向下平移1个单位,则所得抛物线的解析式为()ABCD3如图,有一圆锥形粮堆,其侧面展开图是半径为6m

2、的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A3mBmCmD4m4国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人设2016年底至2018年底该地区贫困人口的年平均下降率为,根据题意列方程得()ABCD5如图,ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4)若反比例函数y在第一象限内的图象与ABC有交点,则k的取值范围是()A1k4B2k8C2k16D8k166下列图形中是中心对称图形的有()个

3、A1B2C3D47下列说法正确的是( )经过三个点一定可以作圆;若等腰三角形的两边长分别为3和7,则第三边长是3或7;一个正六边形的内角和是其外角和的2倍;随意翻到一本书的某页,页码是偶数是随机事件;关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根ABCD8若|m|5,|n|7,m+n0,则mn的值是( )A12或2B2或12C12或2D2或129若,则的值是( )ABCD010如图,将ABC放在每个小正方形的边长为1的网格中,点A,B,C均在格点上,则t anC的值是()A2BC1D11计算的结果是A3B3C9D912下列方程中有一个根为1的方程是()Ax2+2x0Bx2+

4、2x30Cx25x+40Dx23x40二、填空题(每题4分,共24分)13为估计全市九年级学生早读时间情况,从某私立学校随机抽取100人进行调查,在这个问题中,调查的样本_(填“具有”或“不具有”)代表性.14如图,将边长为4的正方形沿其对角线剪开,再把沿着方向平移,得到,当两个三角形重叠部分的面积为3时,则的长为_15如图,要拧开一个边长为的正六边形螺帽,扳手张开的开口至少为_16如图,的顶点都在正方形网格的格点上,则的值为_.17关于x的方程2x2ax10一个根是1,则它的另一个根为_18如图,在RtABC中,ACB=90,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,

5、M为BD的中点,则线段CM长度的最小值为_三、解答题(共78分)19(8分)如图,抛物线的表达式为y=ax2+4ax+4a-1(a0),它的图像的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且SAEC:SCEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得BDP的内心也在对称轴上,若存在,求点P的坐标;若不存在,请说明理由;(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,为半径的圆与直线BD相切,求点Q的坐标.20(8分)如图,在ABC中,ABAC,以AB为直径作半圆O,交BC于点D,交

6、AC于点E(1)求证:BDCD(2)若弧DE50,求C的度数(3)过点D作DFAB于点F,若BC8,AF3BF,求弧BD的长21(8分)已知为的外接圆,点是的内心,的延长线交于点,交于点(1)如图1,求证:(2)如图2,为的直径若,求的长22(10分)乐至县城有两座远近闻名的南北古塔,清朝道光11年至13年(公元1831-1833年)修建,南塔名为“文运塔”,高30米;北塔名为“凌云塔”.为了测量北塔的高度AB,身高为1.65米的小明在C处用测角仪CD,(如图所示)测得塔顶A的仰角为45,此时小明在太阳光线下的影长为1.1米,测角仪的影长为1米.随后,他再向北塔方向前进14米到达H处,又测得北

7、塔的顶端A的仰角为60,求北塔AB的高度(参考数据1.414,1.732,结果保留整数)23(10分)已知二次函数的图象如图所示(1)求这个二次函数的表达式;(2)当1x4时,求y的取值范围24(10分)某电商在购物平台上销售一款小电器,其进价为元件,每销售一件需缴纳平台推广费元,该款小电器每天的销售量(件)与每件的销售价格(元)满足函数关系:为保证市场稳定,供货商规定销售价格不得低于元件且不得高于元件(1)写出每天的销售利润(元)与销售价格(元)的函数关系式;(2)每件小电器的销售价格定为多少元时,才能使每天获得的利润最大,最大是多少元?25(12分)在ABC中,P为边AB上一点(1)如图1

8、,若ACPB,求证:AC2APAB;(2)若M为CP的中点,AC2, 如图2,若PBMACP,AB3,求BP的长; 如图3,若ABC45,ABMP60,直接写出BP的长 26某品牌手机去年每台的售价y(元)与月份x之间满足函数关系:y50 x+2600,去年的月销量p(万台)与月份x之间成一次函数关系,其中16月份的销售情况如下表:月份(x)1月2月3月4月5月6月销售量(p)3.9万台4.0万台4.1万台4.2万台4.3万台4.4万台(1)求p关于x的函数关系式;(2)求该品牌手机在去年哪个月的销售金额最大?最大是多少万元?(3)今年1月份该品牌手机的售价比去年12月份下降了m%,而销售量也

9、比去年12月份下降了1.5m%今年2月份,经销商决定对该手机以1月份价格的“八折”销售,这样2月份的销售量比今年1月份增加了1.5万台若今年2月份这种品牌手机的销售额为6400万元,求m的值参考答案一、选择题(每题4分,共48分)1、B【分析】把xa代入方程得到一个二元二次方程,方程的两边都除以a,即可得出答案【详解】把xa代入方程得:(a)2ab+a0,a2ab+a0,a0,两边都除以a得:ab+10,即ab1,故选:B【点睛】此题考查一元二次方程的解,是方程的解即可代入方程求其他未知数的值或是代数式的值.2、A【分析】抛物线平移不改变a的值【详解】原抛物线的顶点为(0,0),向左平移2个单

10、位,再向下平移1个单位,那么新抛物线的顶点为(2,1),可设新抛物线的解析式为:y=(xh)2+k,代入得:y=(x+2)21=x2+4x+1故选A3、C【详解】如图,由题意得:AP=3,AB=6, 在圆锥侧面展开图中 故小猫经过的最短距离是故选C.4、B【分析】等量关系为:2016年贫困人口年贫困人口,把相关数值代入计算即可【详解】解:设这两年全省贫困人口的年平均下降率为,根据题意得:,故选B【点睛】本题考查由实际问题抽象出一元二次方程,得到2年内变化情况的等量关系是解决本题的关键5、C【解析】试题解析:由于ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结

11、论ABC是直角三角形,当反比例函数经过点A时k最小,经过点C时k最大,k最小=12=2,k最大=44=1,2k1故选C6、B【解析】正三角形是轴对称能图形;平行四边形是中心对称图形;正五边形是轴对称图形;正六边形既是中心对称图形又是轴对称图形,中心对称图形的有2个故选B.7、D【分析】利用不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式分别判断后即可确定正确的选项【详解】解:经过不在同一直线上的三个点一定可以作圆,故说法错误;若等腰三角形的两边长分别为3和7,则第三边长是7,故说法错误;一个正六边形的内角和是

12、180(6-2)=720其外角和是360,所以一个正六边形的内角和是其外角和的2倍,故说法正确;随意翻到一本书的某页,页码可能是奇数,也可能是偶数,所以随意翻到一本书的某页,页码是偶数是随机事件,故说法正确;关于x的一元二次方程x2-(k+3)x+k=0,所以方程有两个不相等的实数根,故说法正确故选:D.【点睛】本题考查了不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式,熟练掌握相关知识点是本题的解题关键8、C【分析】根据题意,利用绝对值的意义求出m与n的值,再代入所求式子计算即可.【详解】解:|m|5,|n

13、|7,且m+n0,m5,n7;m5,n7,可得mn12或2,则mn的值是12或2.故选:C.【点睛】本题考查了绝对值的意义,掌握绝对值的意义求值是关键.9、D【分析】设,则a=2k,b=3k,代入式子化简即可【详解】解:设,a=2k,b=3k,=0,故选D.【点睛】本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型10、B【分析】在直角三角形ACD中,根据正切的意义可求解【详解】如图:在RtACD中,tanC故选B【点睛】本题考查了锐角三角比的意义将角转化到直角三角形中是解答的关键11、B【分析】利用二次根式的性质进行化简即可.【详解】=|3|=3.故选B.12、D【分析】利

14、用一元二次方程解的定义对各选项分别进行判断【详解】解:A、当x1时,x2+2x121,所以x1不是方程x2+2x0的解;B、当x1时,x2+2x31234,所以x1不是方程x2+2x30的解;C、当x1时,x25x+41+5+410,所以x1不是方程x25x+40的解;D、当x1时,x23x41+340,所以x1是方程x23x40的解故选:D【点睛】本题考查一元二次方程的解即能使一元二次方程左右两边相等的未知数的值是一元二次方程的解二、填空题(每题4分,共24分)13、不具有【分析】根据抽取样本的注意事项即要考虑样本具有广泛性与代表性,其代表性就是抽取的样本必须是随机的,以此进行分析【详解】解

15、:要估计全市九年级学生早读时间情况,应从该市所以学校九年级中随机抽取100人进行调查,所以在这个问题中调查的样本不具有代表性.故此空填“不具有”.【点睛】本题考查抽样调查的可靠性,解题时注意:样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现14、1或1【分析】设AC、交于点E,DC、交于点F,且设,则,列出方程即可解决问题【详解】设AC、交于点E,DC、交于点F,且设,则,重叠部分的面积为,由,解得或1即或1故答案是1或1【点睛】本题考查了平移的性质、菱形的判定和正方形的性质综合,准确分析题意是解题的关键15、【分析】根据题意,即是求该正六边形的边心距的2倍构造

16、一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30,再根据锐角三角函数的知识求解【详解】设正多边形的中心是O,其一边是AB,AOBBOC60,OAOBABOCBC,四边形ABCO是菱形,AB8mm,AOB60,cosBAC,AM84(mm),OAOC,且AOBBOC,AMMCAC,AC2AM8(mm)故答案为:.【点睛】本题考查了正多边形和圆的知识构造一个由半径、半边、边心距组成的直角三角形,运用锐角三角函数进行求解是解此题的关键16、【分析】先证明ABC为直角三角形,再根据正切的定义即可求解.【详解】根据网格的性质设网格的边长为1,则AB=,AC=,BC=AB2+AC2=BC2

17、,ABC为直角三角形,A=90,=故填:.【点睛】此题主要考查正切的求解,解题的关键是证明三角形为直角三角形.17、【详解】试题分析:设方程的另一个根为m,根据根与系数的关系得到1m=,解得m=考点:根与系数的关系18、【分析】作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,E是AB的中点,M是BD的中点,AD=2,EM为BAD的中位线, ,在RtACB中,AC=4,BC=3,由勾股定理得,AB= CE为RtACB斜

18、边的中线,,在CEM中, ,即,CM的最大值为 .故答案为:.【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.三、解答题(共78分)19、(1)抛物线表达式为y=x2+4x+3 ;(2)P(-2,-3);(3)Q(-4,3).【分析】(1)根据抛物线的对称轴易求得顶点坐标,再根据SAEC:SCEO=1:3,求得OE:OA=3:4,再证得OFEOMA,求得点E的坐标,从而求得答案;(2)根据内心的定义知BPM=DPM,设点P(-2,b),根据三角函数的定义求得,继而求得的值,从而求

19、得答案;(3)设Q(m,m2+4m+3),分类讨论,点Q在BD左上方抛物线上,点Q在BD下方抛物线上,利用的不同计算方法求得的值,从而求得答案.【详解】(1)由抛物线y=ax2+4ax+4a-1得对称轴为直线,当时, ,SAEC:SCEO=1:3 ,AE:OE=1:3 ,OE:OA=3:4,过点E作EFx轴,垂足为点F,设对称轴与x轴交点为M,如图,EF/AM ,OFEOMA , , , ,把点代入抛物线表达式y=ax2+4ax+4a-1得,解得:a=1,抛物线表达式为:y=x2+4x+3 ;(2)三角形的内心是三个角平分线的交点,BPM=DPM,过点D作DHAM,垂足为点H,设点P(-2,b

20、),tanBPM=tanDPM , ,P(-2,-3),(3)抛物线表达式为:y=x2+4x+3 ,抛物线与轴和轴的交点坐标分别为:B(-3,0) ,C(-1,0) ,D(0,3) ,设Q(m,m2+4m+3),点Q在BD左上方抛物线上,如图:作BGx轴交BD于G,QFx轴交于F,作QEBD于E,设直线QD的解析式为:,点Q的坐标为(m,m2+4m+3)代入得:,直线QD的解析式为:,当时,点G的坐标为; ,即:,解得:或(不合题意,舍去) ,点的坐标为:);点Q在BD下方抛物线上,如图:QFx轴交于F,交BD于G,作QEBD于E,设直线BD的解析式为:,将点B(-3,0)代入得:,直线BD的

21、解析式为:,当时,点G的坐标为; ,即:,方程无解,综上:点的坐标为:).【点睛】本题考查了运用待定系数法求直线及抛物线的解析式,三角函数的定义,勾股定理,三角形的面积,综合性比较强,学会分类讨论的思想思考问题,利用三角形面积的不同计算方法构建方程求值是解答本题的关键.20、(1)详见解析;(2)65;(3)【分析】(1)连接AD,利用圆周角定理推知ADBD,然后由等腰三角形的性质证得结论;(2)根据已知条件得到EOD50,结合圆周角定理求得DAC25,所以根据三角形内角和定理求得ABD的度数,则CABD,得解;(3)设半径ODx则AB2x由AF3BF可得AFABx,BFABx,根据射影定理知

22、:BD2BFAB,据此列出方程求得x的值,最后代入弧长公式求解【详解】(1)证明:如图,连接ADAB是圆O的直径,ADBD又ABAC,BDCD(2)解:弧DE50,EOD50DAEDOE25由(1)知,ADBD,则ADB90,ABD902565ABAC,CABD65(3)BC8,BDCD,BD1设半径ODx则AB2x由AF3BF可得AFABx,BFABx,ADBD,DFAB,BD2BFAB,即12x2x解得x1OBODBD1,OBD是等边三角形,BOD60弧BD的长是:【点睛】此题主要考查圆的综合,解题的关键是熟知圆周角定理、三角形内角和及射影定理的运用.21、(1)证明见解析;(2)【分析】

23、(1)连接半径,根据内心的性质、圆的基本性质以及三角形外角的性质求得,即可得证结论;(2)连接半径,由为的直径、点是的内心以及等腰三角形的三线合一可得、,然后依次解、即可得出结论【详解】解:(1)证明:连接,如图:是的内心,(2)连接,如图:是直径,平分且,在中,在中,由(1)可知,故答案是:(1)证明见解析;(2)【点睛】本题考查了三角形内心的性质、圆的一些基本性质、三角形外角的性质、等腰三角形的性质、垂径定理、锐角三角函数以及勾股定理等知识点,难度不大,属于中档题型22、北塔的高度AB约为35米【分析】设AE=x,根据在同一时间,物体高度与影子长度成正比例关系可得CD的长,在RtADE中,

24、由ADE=45可得AE=DE=x,可得EF=(x-14)米,在RtAFE中,利用AFE的正切列方程可求出x的值,根据AB=AE+BE即可得答案.【详解】设AE=x,小明身高为1.65米,在太阳光线下的影长为1.1米,测角仪CD的影长为1米,CD=1.5(米)BE=CD=1.5(米),在RtADE中,ADE=45,DE=AE=x,DF=14米,EF=DEDF=(x14)米,在RtAFE中,AFE=60,tan60=,解得:x=()(米),故AB=AE+BE=+1.535米答:北塔的高度AB约为35米 【点睛】本题考查解直角三角形的应用,熟练掌握各三角函数的定义及特殊角的三角函数值是解题关键.23

25、、(1)y(x2)2+1;(2)y1【分析】(1)设顶点式ya(x2)2+1,然后把(0,1)代入求出a即可得到抛物线解析式;(2)分别计算自变量为1和1对应的函数值,然后根据二次函数的性质解决问题【详解】解:(1)设抛物线解析式为ya(x2)2+1,把(0,1)代入得1a+11,解得a,所以抛物线解析式为y-(x2)2+1(2)当x1时,y(12)2+1;当x1时,y(12)2+11, 当-1x2时,y1;当2x1时,1y1所以当1x1时,y的取值范围为y1【点睛】本题考查了待定系数法求二次函数的解析式和二次函数的性质在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设

26、出函数关系式,从而代入数值求解24、(1);(2)当时,w有最大值,最大值为750元【分析】(1)直接利用“总利润=每件的利润销量”得出函数关系式;(2)由(1)中的函数解析式,将其配方成顶点式,结合x的取值范围,利用二次函数的性质解答即可【详解】(1)依题意得:(2)当,w随x的增大而减小当时,w有最大值,最大值为:元【点睛】本题主要考查了二次函数的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出函数关系式及熟练掌握二次函数的性质25、(1)证明见解析;(2)BP;BP【解析】试题分析:(1)根据已知条件易证ACPABC,由相似三角形的性质即可证得结论;(2)如图,作CQBM交AB延长线于Q,设BPx,则PQ2x,易证APCACQ,所以AC2APAQ,由此列方程,解方程即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论