版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,在一个周长为10 m的长方形窗户上钉上一块宽为1 m的长方形遮阳布,使透光部分正好是一个正方形,则钉好后透光部分的面积为( )A9 m2B25 m2
2、C16 m2D4 m22对于函数y,下列说法错误的是( )A它的图像分布在第一、三象限B它的图像与直线yx无交点C当x0时,y的值随x的增大而增大D当x0,图象位于一、三象限,正确;B. y=x经过二、四象限,故与反比例函数没有交点,正确;C. 当x0时,y的值随x的增大而增大,错误;D. 当x0时,y的值随x的增大而减小,正确,故选C.3、C【解析】不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】A、必然事件发生的概率是1,正确;B、通过大量重复试验,可以用频率估计概率,正确;C、概率很小的事件也有可能发生,故错误;D、投一枚图钉,“钉尖朝上”的概率不
3、能用列举法求得,正确,故选:C【点睛】本题考查了概率的意义,概率的意义反映的只是这一事件发生的可能性的大小,概率取值范围:0p1,其中必然发生的事件的概率P(A)1;不可能发生事件的概率P(A)0;随机事件,发生的概率大于0并且小于1.事件发生的可能性越大,概率越接近与1,事件发生的可能性越小,概率越接近于0.4、D【分析】直接根据顶点式的特点求顶点坐标【详解】解:y3(x1)2+3是抛物线的顶点式,顶点坐标为(1,3)故选:D【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,对称轴为xh,顶点坐标为(h,k)5、B【解析】找出这组数据出现次数最多的
4、那个数据即为众数.【详解】解:数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.6、D【分析】必然事件是指一定会发生的事件;不可能事件是指不可能发生的事件;随机事件是指可能发生也可能不发生的事件根据定义,对每个选项逐一判断【详解】解: A选项,不可能事件; B选项,不可能事件; C选项,随机事件;D选项,必然事件;故选:D【点睛】本题考查了必然事件、不可能事件、随机事件,正确理解必然事件、不可能事件、随机事件的定义是本题的关键7、A【解析】利用增长后的量=增长前的量(1+增长率),设平均
5、每次增长的百分率为x,根据“从80吨增加到100吨”,即可得出方程【详解】由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即: 80(1+x)2=100,故选A【点睛】本题考查了一元二次方程的应用(增长率问题)解题的关键在于理清题目的含义,找到2017年和2018年的产量的代数式,根据条件找准等量关系式,列出方程8、D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.9、
6、B【解析】由等腰三角形“三线合一”的性质可得EF=BF,根据H是正方形对角线BD的中点可得CH=DH=BH,即可证明HF是BDE的中位线,可得HF=DE,HF/DE;由BD=DE即可得HC=HF;利用直角三角形两锐角互余的关系可得CBE=CDG,利用ASA可证明BCEDCG,可得DG=BE,可判定DG=2EF,由正方形的性质可得BD2=2CD2,根据CBE=CDG,E是公共角可证明BCEDFE,即可得,即BEDF=DEBC,可对进行判定,根据等底等高的三角形面积相等可对进行判定,综上即可得答案.【详解】BD=DE,DFBE,EF=BF,H是正方形ABCD对角线BD的中点,CH=DH=BH=BD
7、,HF是BDE的中位线,HF=DE=BD=CH,HF/DE,故正确,CBE+E=90,FDE+E=90,CBE=FDE,又CD=BC,DCG=BCE=90,BCEDCG,DG=BE,BE=2EF,DG=2EF,故正确,CBE=FDE,E=E,BCEDFE,即BEDF=DEBC,BD2=CD2+BC2=2CD2DE2=2CD2,DEBC2CD2,BEDF2CD2,故错误,DH=BD,SDFH=SDFB,BF=BE,SDFB=SBDE,SDFH=SBDE,即SBDE=4SDFH,故正确,综上所述:正确的结论有,共4个,故选B.【点睛】本题考查正方形的性质、等腰三角形的性质、全等三角形的判定与性质、
8、相似三角形的判定与性质及三角形中位线的性质,综合性较强,熟练掌握所学性质及定理是解题关键.10、A【解析】画树状图得出所有的情况,根据概率的求法计算概率即可.【详解】画树状图得:共有12种等可能的结果,两次摸出的小球标号之和等于6的有2种情况,两次摸出的小球标号之和等于6的概率 故选A【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.二、填空题(每小题3分,共24分)11、x23x+2=1【分析】按照去括号、移项、合并同类项的步骤化为ax2+bx+c=1的形式即可.【详解】x2+x=4x4+2,x23x+2=1故答案为:x23x+2=1【点睛】此题考查了一元
9、二次方程的一般形式,一元二次方程的一般形式为ax2+bx+c=1(a1)其中a是二次项系数,b是一次项系数,c是常数项.12、【分析】分别求出大正方形和小正方形的边长,再利用勾股定理列式求出AC,然后根据正弦和余弦的定义即可求cos的值【详解】小正方形面积为49,大正方形面积为169, 小正方形的边长是7,大正方形的边长是13,在RtABC中,AC2BC2AB2,即AC2(7AC)2132,整理得,AC27AC600,解得AC5,AC12(舍去),BC12,cos=故填:.【点睛】本题考查了勾股定理的证明,锐角三角形函数的定义,利用勾股定理列式求出直角三角形的较短的直角边是解题的关键13、 (
10、3,2)【分析】根据题意和函数图象,可以用含m代数式表示出n,然后根据点A和点E都在改反比例函数图象上,即可求得m的值,进而求得点E的坐标,从而可以写出点D的坐标,本题得以解决【详解】解:由题意可得,nm+2,则点E的坐标为(m+2,),点A和点E均在反比例函数y(k0)的图象上,2m,解得,m1,点E的坐标为(3,),点D的坐标为(3,2),故答案为:(3,2)【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键14、4【分析】根据扇形的弧长公式解答即可得解【详解】设扇形弧长为l,面积为s,半径为r,l=4故答案为:4【点睛】
11、本题考查了扇形面积的计算,弧长的计算,熟悉扇形的弧长公式是解题的关键,属于基础题15、1【分析】先根据周长求出菱形的边长,再根据菱形的对角线互相垂直平分,利用勾股定理求出BD的一半,然后即可得解【详解】解:如图,菱形ABCD的周长是20cm,对角线AC6cm,AB2045cm,AOAC3cm,又ACBD,BO4cm,BD2BO1cm故答案为:1【点睛】本题考查了菱形的性质,属于简单题,熟悉菱形对角线互相垂直且平分是解题关键.16、1【解析】试题解析:设圆锥的母线长为R, 解得:R=6,圆锥侧面展开图的弧长为:6,圆锥的底面圆半径是62=1故答案为1.17、【分析】首先判断出AB、BC是O的切线
12、,进而得出FC=AF+DC,设AF=x,再利用勾股定理求解即可.【详解】解:DAB=ABC=90,AB、BC是O的切线,CF是O的切线,AF=EF,BC=EC,FC=AF+DC,设AF=x,则,DF=2-x,CF=2+x,在RTDCF中,CF2=DF2+DC2,即(2+x)2=(2-x)2+22,解得x=,DF=2-=,故答案为:.【点睛】本题考查了正方形的性质,切线长定理的应用,勾股定理的应用,熟练掌握性质定理是解题的关键18、1【分析】根据AE:ED1:2,得到BC=3AE,证明DEFBCF,得到,求出FC,即可求出CE【详解】解:AE:ED1:2,DE2AE,四边形ABCD是平行四边形,
13、BCADAE+DE3AE,ADBC,DEFBCF,FC6,CEEF+CF1,故答案为:1【知识点】本题考查平行四边形的性质、相似三角形的判定与性质,理解相似三角形的判定与性质定理是解题关键三、解答题(共66分)19、见解析【分析】连接AA,作AA的垂直平分线得到它的中点O,则点O为对称中心,延长BO到B,使OB=OB,延长CO到C,使OC=OC,则ABC满足条件【详解】如图,点O和ABC为所作【点睛】本题考查了根据旋转变化作图的知识,根据作线段的垂直平分线找到对称中心是解决问题的关键20、(1);(1)x13,x11【分析】(1)用配方法即可得出结论;(1)整理后用因式分解法即可得到结论【详解
14、】(1)x14x+1=0,x14x+4=1,(x1)1=1,;(1)(x1)(x+1)=4,x1+x6=0,(x+3)(x1)=0,x1=3,x1=1【点睛】本题考查了一元二次方程,解答本题的关键是熟练运用一元二次方程的解法,本题属于基础题型21、(1)y=x22x+1;(2)点P(2,1)在这个二次函数的图象上,【分析】(1)根据给定点的坐标,利用待定系数法求出二次函数解析式即可;(2)代入x=-2求出y值,将其与1比较后即可得出结论【详解】(1)设二次函数的解析式为y=ax2+bx+1; 二次函数的图象经过点(1,0),(2,5),则有: 解得;y=x22x+1(2)把x=-2代入函数得y
15、=(2)22(2)+1=4+4+1=1,点P(2,1)在这个二次函数的图象上,【点睛】考查待定系数法求二次函数解析式,二次函数图象上点的坐标特征,掌握待定系数法求二次函数解析式是解题的关键.22、(1)yx22x+3;(2)m2;(3)存在,点N的坐标为(1,2)或(1,0),理由见解析【分析】(1)先确定出点A,B坐标,再用待定系数法即可得出结论;(2)先表示出DE,再利用勾股定理表示出AD,建立方程即可得出结论;(3)分两种情况:以BD为一边,判断出EDBGNM,即可得出结论以BD为对角线,利用中点坐标公式即可得出结论【详解】(1)当x0时,y3,B(0,3),当y0时,x+30,x3,A
16、(3,0),把A(3,0),B(0,3)代入抛物线yx2+bx+c中得:, 解得:, 抛物线的解析式为:yx22x+3,(2)CDOA,C(m,0),D(m,m+3),E(m,m22m+3),DE(m22m+3)(m+3)m23m,ACm+3,CDm+3,由勾股定理得:AD(m+3),DEAD,m23m2(m+3),m13(舍),m22;(3)存在,分两种情况:以BD为一边,如图1,设对称轴与x轴交于点G,C(2,0),D(2,1),E(2,3),E与B关于对称轴对称,BEx轴,四边形DNMB是平行四边形,BDMN,BDMN,DEBNGM90,EDBGNM,EDBGNM,NGED2,N(1,2
17、);当BD为对角线时,如图2,此时四边形BMDN是平行四边形,设M(n,n22n+3),N(1,h),B(0,3),D(-2,1),n-1,h0N(1,0);综上所述,点N的坐标为(1,2)或(1,0)【点睛】此题是二次函数的综合题,考查待定系数法求函数解析式,根据线段之间的数量关系求点坐标,根据点的位置构建平行四边形,(3)中以BD为对角线时,利用中点坐标公式计算更简单.23、(1);(2)2【分析】(1)利用特殊角的三角函数值分别代入计算即可;(2)利用特殊角的三角函数值以及零次幂的值分别代入计算即可【详解】解:(1)原式;(2)原式=【点睛】此题主要考查了特殊角的三角函数值,正确记忆三角
18、函数值是解题关键24、(1)x=1;(2)m=4【分析】(1)由顶点式即可得出该二次函数图象的对称轴;(2)利用二次函数的对称性即可解决问题.【详解】解:(1),该二次函数图象的对称轴为:直线x=1,(2)该二次函数图象的对称轴为:直线x=1,A(0,4),B(2,m).是关于直线x=1成对称,故m=4.【点睛】本题考查了二次函数的顶点式的性质,掌握顶点式的顶点坐标及对称性是解题的关键.25、(1)见解析(2)2:1【分析】(1)连接OD,易证得CODCOB(SAS),然后由全等三角形的对应角相等,求得CDO=90,即可证得直线CD是O的切线(2)由CODCOB可得CD=CB,即可得DE=2CD,易证得EDAECO,然后由相似三角形的对应边成比例,求得AD:OC的值【详解】解:(1)证明:连接DO,ADOC,DAO=COB,ADO=COD又OA=OD,DAO=ADOCOD=COB在COD和COB中,CODCOB(SAS)CDO=CBO=90.又点D在O上,CD是O的切线.(2)CODCOBCD=CBDE=2BC,ED=2CDADOC,EDAECOAD:OC=DE:CE=2:126、 (1)60;(2)四边形ACFD是菱形理由见解析.【分析】(1)利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024约定子女探望权及离婚后财产分割与子女教育协议3篇
- 2025年农业科技产品研发与推广合同3篇
- 二零二五年度民宿餐饮服务员劳动协议范本3篇
- 2024年04月新疆兴业银行乌鲁木齐分行春季校园招考笔试历年参考题库附带答案详解
- 专业司机招聘协议2024版示例一
- 2025年度厂房租赁合同标准版(含租赁保证金)3篇
- 临时岗位:2024政府工作人员协议版
- 二零二四全新钢材供应链居间管理服务协议3篇
- 2025年度产业园区场商位租赁合作合同4篇
- 2025年农膜生产设备租赁与维修服务合同3篇
- 申根签证申请表模板
- 企业会计准则、应用指南及附录2023年8月
- 谅解书(标准样本)
- 2022年浙江省事业编制招聘考试《计算机专业基础知识》真题试卷【1000题】
- 认养一头牛IPO上市招股书
- GB/T 3767-2016声学声压法测定噪声源声功率级和声能量级反射面上方近似自由场的工程法
- GB/T 23574-2009金属切削机床油雾浓度的测量方法
- 西班牙语构词.前后缀
- 动物生理学-全套课件(上)
- 河北省衡水市各县区乡镇行政村村庄村名居民村民委员会明细
- DB32-T 2665-2014机动车维修费用结算规范-(高清现行)
评论
0/150
提交评论