版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每小题3分,共30分)1下列函数中,是反比例函数的是( )ABCD2天津市一足球场占地163000平方米,将163000用科学记数法表示应为( )A163103B16.3104C1.63105D0.1631063有三张正面分别写有数字1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为( )ABCD4如图,函数y1=x1和函数的图象相交于点M(2,m),N(1,n),若y1y2,则x的取值范围是()Ax1或0 x2Bx1或x
3、2C1x0或0 x2D1x0或x25已知一扇形的圆心角为,半径为,则以此扇形为侧面的圆锥的底面圆的周长为( )ABCD6如图,平行于BC的直线DE把ABC分成面积相等的两部分,则的值为()A1BC-1D+17如图,O的半径OA等于5,半径OC与弦AB垂直,垂足为D,若OD3,则弦AB的长为( )A10B8C6D48在RtABC中,cosA= ,那么sinA的值是( )ABCD9一5的绝对值是( )A5BCD510在一个不透明的盒子中有大小均匀的黄球与白球共12个,若从盒子中随机取出一个球,若取出的球是白球的概率是,则盒子中白球的个数是( ).A3B4C6D8二、填空题(每小题3分,共24分)1
4、1若两个相似三角形的面积比为14,则这两个相似三角形的周长比是_12在一次摸球实验中,摸球箱内放有白色、黄色乒乓球共50个,这两种乒乓球的大小、材质都相同小明发现,摸到白色乒乓球的频率稳定在60%左右,则箱内黄色乒乓球的个数很可能是_13一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是_ cm(结果保留)14二次函数图象的顶点坐标为_15如果一个扇形的弧长等于它的半径,那么此扇形成为“等边扇形”则半径为2的“等边扇形”的面积为 16一个不透明的口袋中装有5个红球和若干个白球,他们除颜色外其他完全相同,通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,估计口袋中白球有_
5、个17方程的根为_18如果线段a、b、c、d满足,则 =_.三、解答题(共66分)19(10分)如图,在平面直角坐标系xOy中,直线和抛物线W交于A,B两点,其中点A是抛物线W的顶点当点A在直线上运动时,抛物线W随点A作平移运动在抛物线平移的过程中,线段AB的长度保持不变应用上面的结论,解决下列问题:在平面直角坐标系xOy中,已知直线点A是直线上的一个动点,且点A的横坐标为以A为顶点的抛物线与直线的另一个交点为点B(1)当时,求抛物线的解析式和AB的长;(2)当点B到直线OA的距离达到最大时,直接写出此时点A的坐标;(3)过点A作垂直于轴的直线交直线于点C以C为顶点的抛物线与直线的另一个交点为
6、点D当ACBD时,求的值;若以A,B,C,D为顶点构成的图形是凸四边形(各个内角度数都小于180)时,直接写出满足条件的的取值范围20(6分)如图,是的直径,点在上且,连接,过点作交的延长线于点求证:是的切线;21(6分)已知抛物线y=ax2+bx+c经过(1,0),(0,3),(2,3)三点(1)求这条抛物线的表达式;(2)写出抛物线的开口方向、对称轴和顶点坐标22(8分)某品牌太阳能热水器的实物图和横断面示意图如图所示已知真空集热管DE与支架CB所在直线相交于点O,且;支架BC与水平线AD垂直,另一支架AB与水平线夹角,求OB的长度(结果精确到1cm;温馨提示:,)23(8分)受全国生猪产
7、能下降的影响,猪肉价格持续上涨,某超市猪肉8月份平均价格为25元/斤,10月份平均价格为36元/斤,求该超市猪肉价格平均每月增长的百分率24(8分)平行四边形的对角线相交于点,的外接圆交于点且圆心恰好落在边上,连接,若.(1)求证:为切线.(2)求的度数.(3)若的半径为1,求的长.25(10分)某市为调查市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“:自行车,:电动车,:公交车,:家庭汽车,:其他”五个选项中选择最常用的一项.将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题(1)本次调查中,一共调查了 名市民,其中“:公交
8、车”选项的有 人;扇形统计图中,项对应的扇形圆心角是 度;(2)若甲、乙两人上班时从、四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率26(10分)如图,点D、E分别在的边AB、AC上,若,求证:;已知,AD:3,求AC的长参考答案一、选择题(每小题3分,共30分)1、B【解析】根据反比例函数的一般形式即可判断【详解】A、不符合反比例函数的一般形式y,(k0)的形式,选项错误;B、是一次函数,正确;C、不符合反比例函数的一般形式y,(k0)的形式,选项错误;D、不符合反比例函数的一般形式y,(k0)的形式,选项错误故选:B【点睛】本题考查了
9、反比例函数的定义,重点是将一般式y(k0)转化为ykx1(k0)的形式2、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:将163000用科学记数法表示为:1.63105 故选:C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值3、B【详解】试题分析:根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(1,1)(1,2
10、)共2个,所以,P=故选B考点:列表法与树状图法求概率4、D【解析】析:根据反比例函数的自变量取值范围,y1与y1图象的交点横坐标,可确定y1y1时,x的取值范围解答:解:函数y1=x-1和函数y1=的图象相交于点M(1,m),N(-1,n),当y1y1时,那么直线在双曲线的上方,此时x的取值范围为-1x0或x1故选D点评:本题考查了反比例函数与一次函数的交点问题的运用关键是根据图象的交点坐标,两个函数图象的位置确定自变量的取值范围5、A【分析】利用弧长公式计算出扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长即是扇形的弧长.【详解】解:扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长为故选:A【
11、点睛】本题考查了弧长的计算:.6、C【解析】由DEBC可得出ADEABC,利用相似三角形的性质结合SADE=S四边形BCED,可得出,结合BD=ABAD即可求出的值【详解】DEBC,ADE=B,AED=C,ADEABC,SADE=S四边形BCED,SABC=SADE+S四边形BCED,故选C【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键7、B【解析】试题分析:由OC与AB垂直,利用垂径定理得到D为AB的中点,在直角三角形AOD中,由OA与OD的长,利用勾股定理求出AD的长,由AB=2AD即可求出AB的长OCAB,D为AB的中点,即AD=BD=0.5
12、AB,在RtAOD中,OA=5,OD=3,根据勾股定理得:AD=4则AB=2AD=1故选B考点:垂径定理点评:此题考查了垂径定理,以及勾股定理,熟练掌握垂径定理是解本题的关键8、B【分析】利用同角三角函数间的基本关系求出sinA的值即可【详解】:RtABC中,cosA= ,sinA= =,故选B【点睛】本题考查了同角三角函数的关系,以及特殊角的三角函数值,熟练掌握同角三角函数的关系是解题的关键9、A【解析】试题分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点5到原点的距离是5,所以5的绝对值是5,故选A10、B【分析】根据白、黄球共有的个数乘以白球的概率即可解答.【详解
13、】由题意得:12=4,即白球的个数是4.故选:B.【点睛】本题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=二、填空题(每小题3分,共24分)11、【解析】试题分析:两个相似三角形的面积比为1:4,这两个相似三角形的相似比为1:1,这两个相似三角形的周长比是1:1,故答案为1:1考点:相似三角形的性质12、20【解析】先设出白球的个数,根据白球的频率求出白球的个数,再用总的个数减去白球的个数即可【详解】设黄球的个数为x个,共有黄色、白色的乒乓球50个,黄球的频率稳定在60%,60%,解得x30,布袋中白色球的个数很可能是503
14、020(个).故答案为:20.【点睛】本题考查了利用频率估计概率,熟练掌握该知识点是本题解题的关键.13、15【分析】圆锥的侧面积=底面半径母线长,把相应数值代入即可求解【详解】解:圆锥的侧面积=35=15cm2故答案为:15【点睛】本题考查圆锥侧面积公式的运用,掌握公式是关键14、【解析】二次函数(a0)的顶点坐标是(h,k)【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2)故答案为:(1,2)【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程中的h,k所表示的意义15、1【解析】试题分析:根据题意可得圆心角的度数为:,则S=1考
15、点:扇形的面积计算16、15【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可【详解】解:设白球个数为:x个,摸到红色球的频率稳定在25%左右,口袋中得到红色球的概率为25%,解得x=15,检验:x=15是原方程的根,白球的个数为15个,故答案为:15.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出和分式方程的解法解题关键17、x=3【分析】方程两边同时乘以,变为整式方程,然后解方程,最后检验,即可得到答案.【详解】解:,方程两边同时乘以,得:,解得:,经检验:是原分式方程的根,方程的根为:.故答案为:.【点睛】本题考查了解
16、分式方程,解题的关键是熟练掌握解分式方程的步骤,注意要检验.18、【分析】设,则,代入计算即可求得答案.【详解】线段满足,设,则,故答案为:【点睛】本题考查了比例线段以及比例的性质,设出适当的未知数可使解题简便三、解答题(共66分)19、(1);(2);(3);的取值范围是或【分析】(1)根据t=3时,A的坐标可以求得是(3,-2),利用待定系数法即可求得抛物线的解析式,则B的坐标可以求得;(2)OAB的面积一定,当OA最小时,B到OA的距离即OAB中OA边上的高最大,此时OAAB,据此即可求解;(3)方法一:设AC,BD交于点E,直线l1:y=x-2,与x轴、y轴交于点P和Q(如图1)由点D
17、在抛物线C2:y=x-(2t-4)2+(t-2)上,可得 =(t-1)-(2t-4)2+(t-2),解方程即可得到t的值;方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行线,交于点N(如图2),根据BDAC,可得t-1=2t-,解方程即可得到t的值;设直线l1与l2交于点M随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,可得满足条件的t的取值范围【详解】解:(1)点A在直线l1:y=x-2上,且点A的横坐标为3,点A的坐标为(3,-2),抛物线C1的解析式为y=-x2-2,点B在直线l1:y=x-2上,设点B的坐标为(x,x-2)点B在抛
18、物线C1:y=-x2-2上,x-2=-x2-2,解得x=3或x=-1点A与点B不重合,点B的坐标为(-1,-3),由勾股定理得AB=(2)当OAAB时,点B到直线OA的距离达到最大,则OA的解析式是y=-x,则,解得: ,则点A的坐标为(1,-1)(3)方法一:设,交于点,直线,与轴、轴交于点和(如图1)则点和点的坐标分别为,轴,轴,点在直线上,且点的横坐标为,点的坐标为点的坐标为轴,点的纵坐标为点在直线上,点的坐标为抛物线的解析式为,点的横坐标为,点在直线上,点的坐标为点在抛物线上,解得或当时,点与点重合,方法二:设直线l1:y=x-2与x轴交于点P,过点A作y轴的平行线,过点B作x轴的平行
19、线,交于点N(如图2)则ANB=93,ABN=OPB在ABN中,BN=ABcosABN,AN=ABsinABN在抛物线C1随顶点A平移的过程中,AB的长度不变,ABN的大小不变,BN和AN的长度也不变,即点A与点B的横坐标的差以及纵坐标的差都保持不变同理,点C与点D的横坐标的差以及纵坐标的差也保持不变由(1)知当点A的坐标为(3,-2)时,点B的坐标为(-1,-3),当点A的坐标为(t,t-2)时,点B的坐标为(t-1,t-3)ACx轴,点C的纵坐标为t-2点C在直线l2:yx上,点C的坐标为(2t-4,t-2)令t=2,则点C的坐标为(3,3)抛物线C2的解析式为y=x2点D在直线l2:yx
20、上,设点D的坐标为(x,)点D在抛物线C2:y=x2上,x2解得x或x=3点C与点D不重合,点D的坐标为(,)当点C的坐标为(3,3)时,点D的坐标为(,)当点C的坐标为(2t-4,t-2)时,点D的坐标为(2t,t)BDAC,t12ttt的取值范围是t或t4设直线l1与l2交于点M随着点A从左向右运动,从点D与点M重合,到点B与点M重合的过程中,以A,B,C,D为顶点构成的图形不是凸四边形【点睛】本题考查了二次函数综合题,掌握待定系数法求得函数的解析式,点到直线的距离,平行于坐标轴的点的特点,方程思想的运用是解题的关键20、见解析【分析】连结,由,根据圆周角定理得,而,则,可判断,由于,所以
21、,然后根据切线的判定定理得到是的切线;【详解】解:证明:连结,如图,是的切线;【点睛】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线21、(1)y=2x2x1;(2)抛物线的开口向上,对称轴为x=,顶点坐标为(,)【分析】(1)将三点代入y=ax2+bx+c,得到三元一次方程组,解方程组即可得到a,b,c的值,从而得到抛物线的解析式(2)把解析式化成顶点式,根据抛物线的性质即可得出结论【详解】解:(1)把(-1,0),(0,-1),(2,1)代入y=ax2+bx+c,得,解得所以,这个抛物线的表达式为y=2x2x1 (2)y=2x2x1=2(x)2,所以,抛物线的开口
22、向上,对称轴为x=,顶点坐标为(,)【点睛】本题主要考查了待定系数法求二次函数解析式及二次函数的性质熟练掌握待定系数法是解题的关键22、.【分析】设,根据含30度角的直角三角形的性质以及锐角三角函数的定义即可求出答案【详解】设, , , ,解得:,.819 cm【点睛】本题考查解直角三角形,熟练运用锐角三角函数的定义是解题关键.23、20%【分析】等量关系为:8月初猪肉价格(1+增长率)210月的猪肉价格【详解】解:设8、9两个月猪肉价格的月平均增长率为x根据题意,得25(1+x)236,解得x10.220%,x22.2(舍去)答:该超市猪肉价格平均每月增长的百分率是20%【点睛】本题考查了一元二次方程的实际应用,掌握解一元二次方程的方法是解题的关键24、(1)详见解析;(2);(3)【分析】(1)连接OB,根据平行四边形的性质得到BADBCD45,根据圆周角定理得到BOD2BAD90,根据平行线的性质得到OBBC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BMDM,根据直角三角形的性质得到OMBM,求得OBM60,于是得到ADB30;(3)连接EM,过M作MFAE于F,根据等腰三角形的性质得到MOFMDF30,根据OMOE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版本二手房买卖合同针对房产税缴纳的约定3篇
- 2025年个人水利工程建设与维护承包合同模板4篇
- 2025年度生态环保幕墙材料采购与安装劳务分包合同范例4篇
- 二零二五版汽车4S店促销员销售服务合同3篇
- 2025年度新材料研发与应用推广咨询服务合同4篇
- 二手住宅买卖合同(海南版2024)
- 专利技术成果实施许可合同(2024版)版B版
- 2025年度智慧城市运营管理出资合同4篇
- 二零二五年度危险品运输合同框架协议2篇
- 二零二五年度宠物活体活体领养援助合同4篇
- 节前停工停产与节后复工复产安全注意事项课件
- 设备管理绩效考核细则
- 中国人民银行清算总中心直属企业2023年招聘笔试上岸历年典型考题与考点剖析附带答案详解
- (正式版)SJT 11449-2024 集中空调电子计费信息系统工程技术规范
- 广州绿色金融发展现状及对策的研究
- 人教版四年级上册加减乘除四则混合运算300题及答案
- 合成生物学技术在生物制药中的应用
- 消化系统疾病的负性情绪与心理护理
- 高考语文文学类阅读分类训练:戏剧类(含答案)
- 协会监事会工作报告大全(12篇)
- WS-T 813-2023 手术部位标识标准
评论
0/150
提交评论