




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1把二次函数化为的形式是ABCD2三张背面完全相同的数字牌,它们的正面分别印有数字1,2,3,将它们背面朝上,洗匀后随机抽取一张,记录牌上的数字并把牌放回,再重复这样的步骤两次,得到三个数字a、b、c,则以a、b、c为边长能构成等腰三角形的概率是(
2、 )ABCD3如图,CD是O的直径,已知130,则2等于( )A30B45C60D704关于的一元二次方程根的情况是( )A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根5我们把宽与长的比等于黄金比的矩形称为黄金矩形.如图,在黄金矩形中,的平分线交边于点,于点,则下列结论错误的是( )ABCD6如图,在平面直角坐标系中,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点坐标是()A(5,2)B(2,4)C(1,4)D(6,2)7如图,要测量小河两岸相对两点、宽度,可以在小河边的垂线上取一点,则得,则小河的宽等于()ABCD8如图,在一幅长,宽的
3、矩形风景画的四周镶一条金色纸边,制成一幅矩形图,如果要使整个挂图的面积是,设金色纸边的宽为,那么满足的方程是( )ABCD9已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是( )ABCD10已知二次函数y=x2+x+6及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=x+m与新图象有4个交点时,m的取值范围是()Am3Bm2C2m3D6m211如图,在正方形ABCD中,点E,F分别在BC,CD上,AEAF,AC与EF相交于点G,下列结论:AC垂直平分EF;BE+DFEF;当DA
4、F15时,AEF为等边三角形;当EAF60时,SABESCEF,其中正确的是()ABCD12如图,是的直径,点、在上若,则的度数为( )ABCD二、填空题(每题4分,共24分)13平面直角坐标系内的三个点A(1,3)、B(0,3)、C(2,3),_ 确定一个圆(填“能”或“不能”)14若圆中一条弦长等于半径,则这条弦所对的圆周角的度数为_15孙子算经是我国古代重要的数学著作,成书于约一千五百年前,其中有道歌谣算题:“今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问杆长几何?”歌谣的意思是:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五,同时立一根一尺五的小标杆,它的影
5、长五寸(提示:仗和尺是古代的长度单位,1丈10尺,1尺10寸),可以求出竹竿的长为_尺16如图是由一些完全相同的小正方体组成的几何体的主视图、俯视图和左视图,则组成这个几何体的小正方体的个数是_个.17已知a、b是一元二次方程x2+x10的两根,则a+b_18在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为_三、解答题(共78分)19(8分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)抛
6、物线的对称轴上是否存在一点M,使ACM的周长最小?若存在,请求出点M的坐标,若不存在,请说明理由.(3)设抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足SPAB=8,并求出此时点P的坐标.20(8分)如图,已知抛物线经过点和点,与轴交于点.(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.用含的代数式表示线段的长;连接,求的面积最大时点的坐标;(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,
7、请说明理由.21(8分)某地要建造一个圆形喷水池,在水池中央垂直于水面安装一个柱子,点恰好在水面中心,安装在柱子顶端处的圆形喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过的任意平面上,水流喷出的高度与水平距离之间的关系如图所示,建立平面直角坐标系,右边抛物线的关系式为.请完成下列问题:(1)将化为的形式,并写出喷出的水流距水平面的最大高度是多少米;(2)写出左边那条抛物线的表达式;(3)不计其他因素,若要使喷出的水流落在池内,水池的直径至少要多少米?22(10分)如图,四边形是边长为2的正方形,四边形是边长为的正方形,点分别在边上,此时,成立(1)当正方形绕点逆时针旋转,如图
8、,成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形绕点逆时针旋转(任意角)时,仍成立吗?直接回答;(3)连接,当正方形绕点逆时针旋转时,是否存在,若存在,请求出的值;若不存在,请说明理由23(10分)每年十月的第二个周四是世界爱眼日,为预防近视,超市决定对某型号护眼台灯进行降价销售降价前,进价为30元的护眼台灯以80元售出,平均每月能售出200盏,调查表明:这种护眼台灯每盏售价每降低1元,其月平均销售量将增加10盏(1)写出月销售利润y(单位:元)与销售价x(单位:元/盏)之间的函数表达式;(2)当销售价定为多少元时,所得月利润最大?最大月利润为多少元?24(10分)解方程(1)(
9、2)25(12分)如图,在RtABC中,C=90,过AC上一点D作DEAB于E,已知AB=10cm,AC=8cm,BE=6cm,求DE26如图,AB是O的直径,点C是圆上一点,点D是半圆的中点,连接CD交OB于点E,点F是AB延长线上一点,CFEF(1)求证:FC是O的切线;(2)若CF5,求O半径的长参考答案一、选择题(每题4分,共48分)1、B【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式【详解】原式(x24x4)(x24x48)(x2)22故选:B【点睛】此题考查了二次函数一般式与顶点式的转换,解答此类问题时只要把函数式直接配方即可求
10、解2、C【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与构成等腰三角形的情况,再利用概率公式即可求得答案【详解】画树状图得:共有27种等可能的结果,构成等腰三角形的有15种情况,以a、b、c为边长正好构成等腰三角形的概率是:故选:C【点睛】本题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比3、C【解析】试题分析:如图,连接AD CD是O的直径, CAD=90(直径所对的圆周角是90);在RtABC中,CAD=90,1=30, DAB=60; 又DAB=2(同弧所对的圆周角相等),2=60考点:圆周角定理4、A【分析】先写出的值,计算的值进行判断.【
11、详解】方程有两个不相等的实数根故选A【点睛】本题考查一元二次方程根的判别式,是常见考点,当时,方程有两个不相等的实数根;当时,方程有两个相等的实数根;当时,方程没有实数根,熟记公式并灵活应用公式是解题关键.5、C【分析】设,则,根据黄金矩形的概念结合图形计算,据此判断即可【详解】因为矩形宽与长的比等于黄金比,因此,设,则,则选项A.,B.,D.正确,C.选项中等式, ,;故选:C.【点睛】本题考查的是黄金分割、矩形的性质,掌握黄金比值为是解题的关键6、D【分析】根据切线的判定在网格中作图即可得结论【详解】解:如图,过格点A,B,C画圆弧,则点B与下列格点连线所得的直线中,能够与该圆弧相切的格点
12、坐标是(6,2)故选:D【点睛】本题考查了切线的判定,掌握切线的判定定理是解题的关键.7、C【分析】利用ABC的正切函数求解即可【详解】解:ACCD,小河宽AC=BCtanABC=100tan50(m)故选C【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题8、B【分析】根据矩形的面积=长宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程【详解】依题意,设金色纸边的宽为,则:,整理得出:故选:B【点睛】本题主要考查了由实际问题抽象出一元二次方程,对于面
13、积问题应熟记各种图形的面积公式,然后根据题意列出方程是解题关键9、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解【详解】解:菱形的边长是20cm,菱形的边长=204=5cm,菱形的两条对角线长的比是,设菱形的两对角线分别为8x,6x,菱形的对角线互相平分,对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,菱形的两对角线分别为8cm,6cm,菱形的面积=cm2,故选:D【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积
14、的一半10、D【解析】如图,解方程x2+x+6=0得A(2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x3),即y=x2x6(2x3),然后求出直线y=x+m经过点A(2,0)时m的值和当直线y=x+m与抛物线y=x2x6(2x3)有唯一公共点时m的值,从而得到当直线y=x+m与新图象有4个交点时,m的取值范围【详解】如图,当y=0时,x2+x+6=0,解得x1=2,x2=3,则A(2,0),B(3,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+2)(x3),即y=x2x6(2x3),当直线y=x+m经过点A(2,0)时,2
15、+m=0,解得m=2;当直线y=x+m与抛物线y=x2x6(2x3)有唯一公共点时,方程x2x6=x+m有相等的实数解,解得m=6,所以当直线y=x+m与新图象有4个交点时,m的取值范围为6m2,故选D【点睛】本题考查了抛物线与几何变换,抛物线与x轴的交点等,把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解决此类问题常用的方法.11、C【解析】通过条件可以得出ABEADF,从而得出BAE=DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设BC=a,CE=y,由勾股定理就可以得出EF与x、y的关系,
16、表示出BE与EF,即可判断BE+DF与EF关系不确定;当DAF=15时,可计算出EAF=60,即可判断EAF为等边三角形,当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出SCEF和SABE,再通过比较大小就可以得出结论【详解】四边形ABCD是正方形,ABAD,B=D=90在RtABE和RtADF中,RtABERtADF(HL),BE=DFBC=CD,BC-BE=CD-DF,即CE=CF,AE=AF,AC垂直平分EF(故正确)设BC=a,CE=y,BE+DF=2(a-y)EF=y,BE+DF与EF关系不确定,只有当y=(2
17、)a时成立,(故错误)当DAF=15时,RtABERtADF,DAF=BAE=15,EAF=90-215=60,又AE=AFAEF为等边三角形(故正确)当EAF=60时,设EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2(x)2x2=2y(x+y)SCEF=x2,SABE=y(x+y),SABE=SCEF(故正确)综上所述,正确的有,故选C【点睛】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键12、C【分析】根据圆周角定理计算即可【详解】解:,故选:C【点睛】此题考查
18、圆周角定理,解题的关键是熟练掌握基本知识,属于中考常考题型二、填空题(每题4分,共24分)13、不能【分析】根据三个点的坐标特征得到它们共线,于是根据确定圆的条件可判断它们不能确定一个圆【详解】解:B(0,-3)、C(2,-3),BCx轴,而点A(1,-3)与C、B共线,点A、B、C共线,三个点A(1,-3)、B(0,-3)、C(2,-3)不能确定一个圆故答案为:不能【点睛】本题考查了确定圆的条件:不在同一直线上的三点确定一个圆14、30或150【解析】与半径相等的弦与两条半径可构成等边三角形,所以这条弦所对的圆心角为60,而弦所对的圆周角两个,根据圆内接四边形对角互补可知,这两个圆周角互补,
19、其中一个圆周角的度数为12600=300 ,所以另一个圆周角的度数为150.故答案为30或150.15、3【分析】根据同一时刻物高与影长成正比可得出结论【详解】解:设竹竿的长度为x尺,竹竿的影长一丈五尺15尺,标杆长一尺五寸15尺,影长五寸25尺,解得x3(尺)故答案为:3【点睛】本题考查的是同一时刻物高与影长成正比,在解题时注意单位要统一16、【分析】根据几何体的三视图分析即可得出答案.【详解】通过主视图和左视图可知几何体有两层,由俯视图可知最底层有3个小正方体,结合主视图和左视图知第2层有1个小正方体,所以共4个小正方体.故答案为4【点睛】本题主要考查根据三视图判断组成几何体的小正方体的个
20、数,掌握三视图的知识是解题的关键.17、-1【分析】直接根据两根之和的公式可得答案【详解】a、b是一元二次方程x2+x10的两根,a+b1,故答案为:1【点睛】此题考查一元二次方程根与系数的公式,熟记公式并熟练解题是关键.18、1【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.25左右得到比例关系,列出方程求解即可【详解】解:根据题意得:,解得:a1,经检验:a1是分式方程的解,故答案为:1【点睛】本题考查的知识点是事件的概率问题,弄清题意,根据概率公式列方程求解比较简单.三、解答题(共78分)19、(1)y=x22x1;(2)存在;M
21、(1,2);(1)(1+22,4)或(122 ,4)或(1,4).【解析】(1)由于抛物线y=x2+bx+c与x轴交于A(-1,0),B(1,0)两点,那么可以得到方程x2+bx+c=0的两根为x=-1或x=1,然后利用根与系数即可确定b、c的值;(2)点B是点A关于抛物线对称轴的对称点,在抛物线的对称轴上有一点M,要使MA+MC的值最小,则点M就是BC与抛物线对称轴的交点,利用待定系数法求出直线BC的解析式,把抛物线对称轴x=1代入即可得到点M的坐标;(1)根据SPAB=2,求得P的纵坐标,把纵坐标代入抛物线的解析式即可求得P点的坐标【详解】(1)抛物线y=x2+bx+c与x轴交于A(1,0
22、),B(1,0)两点,方程x2+bx+c=0的两根为x=1或x=1,1+1=b,11=c,b=2,c=1,二次函数解析式是y=x22x1(2)点A、B关于对称轴对称,点M为BC与对称轴的交点时,MA+MC的值最小,设直线BC的解析式为y=kx+t(k0),则3k+t=0t=-3,解得:k=1t=-3,直线AC的解析式为y=x1,抛物线的对称轴为直线x=1,当x=1时,y=2,抛物线对称轴上存在点M(1,2)符合题意;(1)设P的纵坐标为|yP|,SPAB=2,12AB|yP|=2,AB=1+1=4,|yP|=4,yP=4,把yP=4代入解析式得,4=x22x1,解得,x=122,把yP=4代入
23、解析式得,4=x22x1,解得,x=1,点P在该抛物线上滑动到(1+22,4)或(122,4)或(1,4)时,满足SPAB=2【点睛】此题主要考查了利用抛物线与x轴的交点坐标确定函数解析式,二次函数的对称轴上点的坐标以及二次函数的性质,二次函数图象上的坐标特征,解题的关键是利用待定系数法得到关于b、c的方程,解方程即可解决问题20、(1)yx24x+1;(2)用含m的代数式表示线段PD的长为m2+1m;PBC的面积最大时点P的坐标为(,);(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形点M的坐标为M1(2,1),M2(2,12),M1(2,1+2)【分析】(1)根据已知
24、抛物线y=ax2+bx+1(a0)经过点A(1,0)和点B(1,0)代入即可求解;(2)先确定直线BC解析式,根据过点P作y轴的平行线交直线BC于点D,即可用含m的带上书表示出P和D的坐标进而求解;用含m的代数式表示出PBC的面积,可得S是关于m的二次函数,即可求解;(1)根据(1)中所得二次函数图象和对称轴先得点E的坐标即可写出点三个位置的点M的坐标【详解】(1)抛物线yax2+bx+1(a0)经过点A(1,0)和点B(1,0),与y轴交于点C,解得,抛物线解析式为yx24x+1; (2)设P(m,m24m+1),将点B(1,0)、C(0,1)代入得直线BC解析式为yBCx+1过点P作y轴的
25、平行线交直线BC于点D,D(m,m+1),PD(m+1)(m24m+1)m2+1m答:用含m的代数式表示线段PD的长为m2+1m SPBCSCPD+SBPDOBPDm2+m(m)2+当m时,S有最大值当m时,m24m+1P(,)答:PBC的面积最大时点P的坐标为(,)(1)存在这样的点M和点N,使得以点C、E、M、N为顶点的四边形是菱形根据题意,点E(2,1),EF=CF=2,EC=2,根据菱形的四条边相等,ME=EC=2,M(2,1-2)或(2,1+2)当EM=EF=2时,M(2,1)点M的坐标为M1(2,1),M2(2,12),M1(2,1+2)【点睛】本题考查了二次函数与方程、几何知识的
26、综合应用,解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件21、(1)喷出的水流距水平面的最大高度是4米.(2).(3)水池的直径至少要6米.【分析】(1)利用配方法将一般式转化为顶点式,即可求出喷出的水流距水平面的最大高度;(2)根据两抛物线的关于y轴对称,即可求出左边抛物线的二次项系数和顶点坐标,从而求出左边抛物线的解析式;(3)先求出右边抛物线与x轴的交点的横坐标,利用对称性即可求出水池的直径的最小值.【详解】解:(1),抛物线的顶点式为.喷出的水流距水平面的最大高度是4米.(2)两抛物线的关于y轴对称左边抛物
27、线的a=-1,顶点坐标为(-1,4)左边抛物线的表达式为.(3)将代入,则得,解得,(求抛物线与x轴的右交点,故不合题意,舍去).(米)水池的直径至少要6米.【点睛】此题考查的是二次函数的应用,掌握将二次函数的一般式转化为顶点式、利用顶点式求二次函数的解析式和求抛物线与x轴的交点坐标是解决此题的关键.22、(1)成立,证明见解析;(2)结论仍成立;(3)存在,【分析】(1)先利用正方形的性质和旋转的性质证明,然后得出,再根据等量代换即可得出,则有;(2)先利用正方形的性质和旋转的性质证明,然后得出,再根据等量代换即可得出,则有;(3)通过分析得出时,在同一直线上,根据AO,AF求,从而有,最后利用即可求解【详解】(1)结论,仍成立如图1,延长交于交于点,四边形,ABCD都是正方形, 由旋转可得,,,结论仍成立 (2)若正方形绕点逆时针旋转时,如图,结论仍然成立,理由如下:如图2,延长交于交于点,四边形,ABCD都是正方形, 由旋转可得,,,结论仍成立 当旋转其他角度时同理可证 ,所以结论仍成立 (3)存在如图3,连接,与相交于,当时,又,在同一直线上四边形ABCD,AEGF是正方形, , ,,即当时,成立【点睛】本题主要考查正方形的性质,全等三角形的判定及性质,解直角三角形,直角三角形两锐角互余,掌握正方形的性质,全等三角形的判定及性质,解直角三角形,直角三角形两锐角互余是解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 第一章概述第一节装卸搬运机械的类型港口常用装卸搬运机械按作
- 申请信息公开物业合同协议
- 白领西装采购合同协议
- 电子商务劳务合同协议
- 生鲜肉类购销合同协议
- 玻璃隔断装修合同协议
- 畜牧业转让合同协议
- 瓷砖加工合同协议书范本
- 盈利小作坊转让合同协议
- 玉米秸秆草料收购合同协议
- 2024年贵航贵阳医院招聘笔试真题
- 2025广州民用房屋租赁合同样本
- 福建事业单位考试求职信撰写技巧试题及答案
- 2025-2030中国金融云行业市场发展分析及发展趋势与投资前景研究报告
- 家庭暖通合同协议
- 心力衰竭填空试题及答案
- 全新机房搬迁协议合同
- 企业品牌部管理制度
- 2025年04月包头医学院公开招聘28名事业单位工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 《美的电器审计案例》课件
- 2025-2030中国冰鞋行业市场发展分析与发展趋势及投资风险研究报告
评论
0/150
提交评论