版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1一个圆锥的侧面积是底面积的4倍,则圆锥侧面展开图的扇形的圆心角是A60B90C120D1802如图在中,弦于点于点,若则的半径的长为( )ABCD3我国传统文化中的“福禄寿喜”图(如图)由四个图案构成这四个图案中既是轴对称图形,又是中心对称图形的
2、是()ABCD4关于抛物线的说法中,正确的是( )A开口向下B与轴的交点在轴的下方C与轴没有交点D随的增大而减小5抛物线y(x+2)2+5的顶点坐标是()A(2,5)B(2,5)C(2,5)D(2,5)6一元二次方程x24x+50的根的情况是()A没有实数根B只有一个实数根C有两个相等的实数根D有两个不相等的实数根7的值为()A2BCD8观察下列图形,既是轴对称图形又是中心对称图形的有A1个B2个C3个D4个9如图,AB是半径为1的O的直径,点C在O上,CAB30,D为劣弧CB的中点,点P是直径AB上一个动点,则PC+PD的最小值为( )A1B2CD10如图,在一块斜边长60cm的直角三角形木
3、板()上截取一个正方形CDEF,点D在边BC上,点E在斜边AB上,点F在边AC上,若CD:CB1:3,则这块木板截取正方形CDEF后,剩余部分的面积为()A202.5cm2B320cm2C400cm2D405cm211若ABCABC,相似比为1:2,则ABC与ABC的周长的比为()A2:1B1:2C4:1D1:412关于二次函数,下列说法错误的是( )A它的图象开口方向向上B它的图象顶点坐标为(0,4)C它的图象对称轴是y轴D当时,y有最大值4二、填空题(每题4分,共24分)13已知向量为单位向量,如果向量与向量方向相反,且长度为3,那么向量=_(用单位向量表示)14如图已知二次函数y1x2+
4、c与一次函数y2x+c的图象如图所示,则当y1y2时x的取值范围_15方程的解为_.16小芳的房间有一面积为3m2的玻璃窗,她站在室内离窗子4m的地方向外看,她能看到窗前面一幢楼房的面积有_m2(楼之间的距离为20m).17在一个不透明的口袋中,装有1个红球若干个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为,则此口袋中白球的个数为_.18如图,已知反比例函数y=(k为常数,k0)的图象经过点A,过A点作ABx轴,垂足为B,若AOB的面积为1,则k=_三、解答题(共78分)19(8分)(1)(问题发现)如图,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF填空
5、:线段CF与DG的数量关系为 ;直线CF与DG所夹锐角的度数为 (2)(拓展探究)如图,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图进行说明(3(解决问题)如图,ABC和ADE都是等腰直角三角形,BACDAE90,ABAC4,O为AC的中点若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为 (直接写出结果)20(8分)在矩形ABCD中,AB3,AD5,E是射线DC上的点,连接AE,将ADE沿直线AE翻折得AFE(1)如图,点F恰好在BC上,求证:ABFFCE;(2)如图,点F在矩形ABCD内,连接CF,若DE1,求EFC的面积
6、;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为 21(8分)如图,从一块长80厘米,宽60厘米的铁片中间截去一个小长方形,使截去小长方形的面积是原来铁片面积的一半,并且剩下的长方框四周的宽度一样,求这个宽度22(10分)如图,一次函数yx+5的图象与坐标轴交于A,B两点,与反比例函数y的图象交于M,N两点,过点M作MCy轴于点C,且CM1,过点N作NDx轴于点D,且DN1已知点P是x轴(除原点O外)上一点(1)直接写出M、N的坐标及k的值;(2)将线段CP绕点P按顺时针或逆时针旋转90得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果
7、不能,请说明理由;(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由23(10分)已知:正方形ABCD,等腰直角三角板的直角顶点落在正方形的顶点D处,使三角板绕点D旋转(1)当三角板旋转到图1的位置时,猜想CE与AF的数量关系,并加以证明;(2)在(1)的条件下,若DE:AE:CE1:3,求AED的度数;(3)若BC4,点M是边AB的中点,连结DM,DM与AC交于点O,当三角板的边DF与边DM重合时(如图2),若OF,求DF和DN的长24(10分)在如图所示的方
8、格纸中,每个小方格都是边长为1个单位长度的正方形,ABC的顶点及点O都在格点上(每个小方格的顶点叫做格点)(1)以点O为位似中心,在网格区域内画出ABC,使ABC与ABC位似(A、B、C分别为A、B、C的对应点),且位似比为2:1;(2)ABC的面积为 个平方单位;(3)若网格中有一格点D(异于点C),且ABD的面积等于ABC的面积,请在图中标出所有符合条件的点D(如果这样的点D不止一个,请用D1、D2、Dn标出)25(12分)先阅读,再填空解题:(1)方程:的根是:_,_,则_,_(2)方程的根是:_,_,则_,_(3)方程的根是:_,_,则_,_(4)如果关于的一元二次方程(且、为常数)的
9、两根为,根据以上(1)(2)(3)你能否猜出:,与系数、有什么关系?请写出来你的猜想并说明理由26已知关于x的一元二次方程mx22x10.(1)若方程有两个实数根,求m的取值范围;(2)若方程的两个实数根为x1,x2,且x1x2x1x2,求m的值参考答案一、选择题(每题4分,共48分)1、B【解析】试题分析:设母线长为R,底面半径为r,底面周长=2r,底面面积=r2,侧面面积=rR,侧面积是底面积的4倍,4r2=rRR=4r底面周长=R圆锥的底面周长等于它的侧面展开图的弧长,设圆心角为n,有,n=1故选B2、C【分析】根据垂径定理求得OD,AD的长,并且在直角AOD中运用勾股定理即可求解【详解
10、】解:弦,于点,于点,四边形是矩形,;故选:【点睛】本题考查了垂径定理、勾股定理、矩形的判定与性质;利用垂径定理求出AD,AE的长是解决问题的关键3、B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解解:A、不是轴对称图形,也不是中心对称图形故错误;B、是轴对称图形,也是中心对称图形故正确;C、是轴对称图形,不是中心对称图形故错误;D、不是轴对称图形,也不是中心对称图形故错误故选B点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合4、C【分析】根据题意利用二次函数的性质,对选项逐
11、一判断后即可得到答案【详解】解:A. ,开口向上,此选项错误;B. 与轴的交点为(0,21),在轴的上方,此选项错误;C. 与轴没有交点,此选项正确;D. 开口向上,对称轴为x=6,时随的增大而减小,此选项错误.故选:C.【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,熟练掌握并利用二次函数的性质解答5、B【分析】根据题目中的函数解析式,可以直接写出该抛物线的顶点坐【详解】抛物线y=(x+2)2+5,该抛物线的顶点坐标为(2,5)故选:B【点睛】本题考查了二次函数的性质,解答本题的关键是明确题意,由函数的顶点式可以直接写出顶点坐标6、A【解析】首先求出一元二次方程根的判别式,然后结合
12、选项进行判断即可【详解】解:一元二次方程,即0,一元二次方程无实数根,故选A【点睛】本题主要考查了根的判别式的知识,解题关键是要掌握一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)0方程有两个相等的实数根;(3)0方程没有实数根7、D【解析】根据特殊角的三角函数值及负指数幂的定义求解即可.【详解】故选:D【点睛】本题考查了特殊角的三角函数值及负指数幂的定义,比较简单,掌握定义仔细计算即可.8、C【解析】试题分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合因此,第一个图形不是轴对称图形
13、,是中心对称图形;第二个图形既是轴对称图形又是中心对称图形;第三个图形既是轴对称图形又是中心对称图形;第四个图形既是轴对称图形又是中心对称图形;既是轴对称图形又是中心对称图形共有3个故选C9、C【分析】作D点关于AB的对称点E,连接OCOE、CE,CE交AB于P,如图,利用对称的性质得到PE=PD,再根据两点之间线段最短判断点P点在P时,PC+PD的值最小,接着根据圆周角定理得到BOC=60,BOE=30,然后通过证明COE为等腰直角三角形得到CE的长即可【详解】作D点关于AB的对称点E,连接OC、OE、CE,CE交AB于P,如图,点D与点E关于AB对称,PE=PD,PC+PD=PC+PE=C
14、E,点P点在P时,PC+PD的值最小,最小值为CE的长度BOC=2CAB=230=60,而D为的中点,BOEBOC=30,COE=60+30=90,COE为等腰直角三角形,CEOC,PC+PD的最小值为故选:C【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半10、C【分析】先根据正方形的性质、相似三角形的判定与性质可得,设,从而可得,再在中,利用勾股定理可求出x的值,然后根据三角形的面积公式、正方形的面积公式计算即可【详解】四边形CDEF为正方形,设,则,在中,即,解得或(不符题意,舍去),则剩余部分的面积为,故选:C【点睛】本题考查了正
15、方形的性质、相似三角形的判定与性质、勾股定理等知识点,利用正方形的性质找出两个相似三角形是解题关键11、B【分析】根据相似三角形的周长比等于相似比即可得出结论【详解】解:,相似比为1:1,与的周长的比为1:1故选:B【点睛】此题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比是解决此题的关键12、D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断【详解】,抛物线开口向上,对称轴为直线x0,顶点为(0,4),当x0时,有最小值4,故A、B、C正确,D错误;故选:D【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在ya(xh)2k中,对称轴为x
16、h,顶点坐标为(h,k)二、填空题(每题4分,共24分)13、【解析】因为向量为单位向量,向量与向量方向相反,且长度为3,所以=,故答案为:.14、0 x1【解析】首先将两函数解析式联立得出其交点横坐标,进而得出当y1y2时x的取值范围【详解】解:由题意可得:x2+cx+c,解得:x10,x21,则当y1y2时x的取值范围:0 x1故答案为0 x1【点睛】此题主要考查了二次函数与一次函数,正确得出两函数的交点横坐标是解题关键15、【解析】这个式子先移项,变成x2=9,从而把问题转化为求9的平方根【详解】解:移项得x2=9,解得x=1故答案为【点睛】本题考查了解一元二次方程-直接开平方法,解这类
17、问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a0)的形式,利用数的开方直接求解注意:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a0);ax2=b(a,b同号且a0);(x+a)2=b(b0);a(x+b)2=c(a,c同号且a0)法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点16、108【解析】考点:平行投影;相似三角形的应用分析:在不同时刻,同一物体的影子的方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在改变,依此进行分析解答
18、:解:根据题意:她能看到窗前面一幢楼房的图形与玻璃窗的外形应该相似,且相似比为=6,故面积的比为36;故她能看到窗前面一幢楼房的面积有363=108m1点评:本题考查了平行投影、视点、视线、位似变换、相似三角形对应高的比等于相似比等知识点注意平行投影特点:在同一时刻,不同物体的物高和影长成比例17、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【详解】摸到红球的概率为,且袋中只有1个红球,袋中共有4个球,白球个数=4-1=3.故答案为:3.【点睛】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.18、-1【解析】试题解析:设点A的坐标为(m,n),因为点A在y=
19、的图象上,所以,有mnk,ABO的面积为1,=1,=1,k=1,由函数图象位于第二、四象限知k0,k=-1考点:反比例外函数k的几何意义.三、解答题(共78分)19、(1)CFDG;45;(2)成立,证明详见解析;(3)【分析】(1)【问题发现】连接AF易证A,F,C三点共线易知AFAGACAD,推出CFACAF(ADAG)DG(2)【拓展探究】连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O证明CAFDAG即可解决问题(3)【解决问题】证明BADCAE,推出ACEABC45,可得BCE90,推出点E的运动轨迹是在射线OCE上,当OECE时,OE的长最短【详解】解:(1)【问题发
20、现】如图中,线段CF与DG的数量关系为CFDG;直线CF与DG所夹锐角的度数为45理由:如图中,连接AF易证A,F,C三点共线AFAGACAD,CFACAF(ADAG)DG故答案为CFDG,45(2)【拓展探究】结论不变理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点OCADFAG45,CAFDAG,ACAD,AFAG,CAFDAG,AFCAGD,CFDG,AFOOGK,AOFGOK,KFAO45(3)【解决问题】如图3中,连接ECABAC,ADAE,BACDAE90,BADCAE,BACB45,BADCAE(SAS),ACEABC45,BCE90,点E的运动轨迹是在射线CE
21、上,当OECE时,OE的长最短,易知OE的最小值为,故答案为.【点睛】本题考查的知识点是正方形的旋转问题,主要是利用相似三角形性质和全等三角形的性质来求证线段间的等量关系,弄清题意,作出合适的辅助线是解题的关键.20、(1)证明见解析;(2);(3)、5、15、【分析】(1)利用同角的余角相等,证明CEFAFB,即可解决问题;(2)过点F作FGDC交DC与点G,交AB于点H,由FGEAHF得出AH=5GF,再利用勾股定理求解即可;(3)分当EFC=90时; 当ECF=90时;当CEF=90时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,BCD90由折叠可得:DEFA90EFAC90
22、CEFCFECFEAFB90CEFAFB在ABF和FCE中AFBCEF,BC90ABFFCE (2)解:过点F作FGDC交DC与点G,交AB于点H,则EGFAHF90在矩形ABCD中,D90由折叠可得:DEFA90,DEEF1,ADAF5EGFEFA90GEFGFEAFHGFE90GEFAFH在FGE和AHF中GEFAFH,EGFFHA90FGEAHFAH=5GF在RtAHF中,AHF90AH2FH2=AF2(5 GF)2(5 GF)2=52GFEFC的面积为2 ;(3)解:当EFC=90时,A、F、C共线,如图所示:设DE=EF=x,则CE=3-x,AC=,CF=-x, CFE=D=90,
23、DCA=DCA, CEFCAD, ,即,解得:ED=x=;当ECF=90时,如图所示:AD=5,AB=3, =4, 设=x,则=3-x,DCB=ABC=90, ,即,解得:x=;由折叠可得 : ,设,则,,在RT中,,即9+x=(x+3),解得x=12, ;当CEF=90时,AD=AF,此时四边形AFED是正方形,AF=AD=DE=5,综上所述,DE的长为:、5、15、.【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键21、长方框的宽度为10厘米【分析】设长方框的宽度为x厘米,则减去小长方形的长为(802x)厘米,宽为(602x
24、)厘米,根据长方形的面积公式结合截去小长方形的面积是原来铁片面积的一半,即可得出关于x的一元二次方程,解之取其较小值即可得出结论【详解】解:设长方框的宽度为x厘米,则减去小长方形的长为(802x)厘米,宽为(602x)厘米,依题意,得:(802x)(602x)8060,整理,得:x270 x+6000,解得:x110,x260(不合题意,舍去)答:长方框的宽度为10厘米【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键22、(1)M(1,4),N(4,1),k4;(2)(2+2,2+2)或(22,22)或(2,2);(3)(,5)或(,3)【分析】(1)利用待
25、定系数法即可解决问题;(2)分三种情形求解:如图2,点P在x轴的正半轴上时,绕P顺时针旋转到点Q,根据COPPHQ,得COPH,OPQH,设P(x,0),表示Q(x+4,x),代入反比例函数的关系式中可得Q的两个坐标;如图3,点P在x轴的负半轴上时;如图4,点P在x轴的正半轴上时,绕P逆时针旋转到点Q,同理可得结论(3)分两种情形分别求解即可;【详解】解:(1)由题意M(1,4),n(4,1),点M在y上,k4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CPPQ,CPQ90,过Q作QHx轴于H,易得:COPPHQ,COPH,OPQH,由(2)知:反比例函数的解析式:y;当x1时,
26、y4,M(1,4),OCPH4设P(x,0),Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)4,x2+4x+48,x2,当x2时,x+42+,如图1,Q(2+2,2+2);当x22时,x+422,如图2,Q(22,22);如图3,CPPQ,CPQ90,设P(x,0)过P作GHy轴,过C作CGGH,过Q作QHGH,易得:CPGPQH,PGQH4,CGPHx,Q(x4,x),同理得:x(x4)4,解得:x1x22,Q(2,2),综上所述,点Q的坐标为(2+2,2+2)或(22,22)或(2,2)(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S
27、(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3)【点睛】本题是一道关于一次函数和反比例函数相结合的综合题目,题目中涉及到了旋转及动点问题,主要是通过作辅助线利用三角形全等来解决,充分考查了学生综合分析问题的能力.23、(1)CEAF,见解析;(2)AED135;(3),.【解析】(1)由正方形和等腰直角三角形的性质判断出ADFCDE即可;(2)设DE=k,表示出AE,CE,EF,判断出AEF为直角三角形,即可求出AED;(3)由ABCD,得出,求出DM,DO,再判断出DFNDCO,得到,求出DN、DF即可【详解】解:(1
28、)CEAF,在正方形ABCD和等腰直角三角形CEF中,FDDE,CDAD,ADCEDF90,ADFCDE,ADFCDE(SAS),CEAF;(2)设DEk,DE:AE:CE1:3AEk,CEAF3k,EFk,AE2+EF27k2+2k29k2,AF29k2,即AE2+EF2AF2AEF为直角三角形,AEF90AEDAEF+DEF90+45135;(3)M是AB的中点,MAABAD,ABCD,MAODCO,在RtDAM中,AD4,AM2,DM2,DO,OF,DF,DFNDCO45,FDNCDO,DFNDCO,即,DN【点睛】此题是几何变换综合题,主要考查了正方形,等腰直角三角形的性质,全等三角形的性质和判定,相似三角形的性质和判定,勾股定理及其勾股定理的逆定理,判断AEF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度物流仓储货物仓储配送服务合同范本9篇
- 行为心理治疗新进展-洞察分析
- 采购合同会审制度的意义3篇
- 采购意向书合同范文3篇
- 采购合同框架协议模板分享3篇
- 采购合同风险问题识别与管理3篇
- 采购合同的追加条件3篇
- 2024年教育软件代工合作协议书正规范范本3篇
- 采购合同流程的挑战与应对3篇
- 采购方案与采购合同的争议解决3篇
- 2022-2023学年北京市海淀区七年级(上)期末语文试卷
- 存货管理制度完整版
- 《东阿阿胶企业核心竞争力问题、原因及提升策略(开题报告有提纲)》
- 第七单元长方形和正方形 单元测试(含答案)2024-2025学年三年级上册数学人教版
- 配电室维护协议书
- 2024年大学试题(管理类)-应急管理考试近5年真题集锦(频考类试题)带答案
- 部编版一年级上册语文期末试题含答案
- 春望(微教学设计) 苏教版
- 新疆巴音郭楞蒙古自治州库尔勒市2024-2025学年高一生物上学期期末考试试题
- 2024年吉林省吉林市丰满区数学四年级第一学期期末预测试题含解析
- 老兵和军马(2023年河南中考语文试卷记叙文阅读题及答案)
评论
0/150
提交评论