2023届广东省珠海市香洲区5月份数学九上期末学业水平测试模拟试题含解析_第1页
2023届广东省珠海市香洲区5月份数学九上期末学业水平测试模拟试题含解析_第2页
2023届广东省珠海市香洲区5月份数学九上期末学业水平测试模拟试题含解析_第3页
2023届广东省珠海市香洲区5月份数学九上期末学业水平测试模拟试题含解析_第4页
2023届广东省珠海市香洲区5月份数学九上期末学业水平测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1为了估计抛掷某枚啤酒瓶盖落地后凸面向下的概率,小明做了大量重复试验经过统计得到凸面向上的次数为次,凸面向下的次数为次,由此可估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为( )ABCD2下面的图形中,是轴对称图形但不是中心对称图形的是()ABCD3

2、如图,等边三角形ABC的边长为5,D、E分别是边AB、AC上的点,将ADE沿DE折叠,点A恰好落在BC边上的点F处,若BF2,则BD的长是()A2B3CD4如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A(,1)B(1,)C(,1)D(,1)5如图,在线段AB上有一点C,在AB的同侧作等腰ACD和等腰ECB,且AC=AD,EC=EB,DAC=CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:DCGBEG;ACEDCB;GFGB=GCGE;若DAC=CEB=90,则2AD2=DFDG.其中正确的是( )ABCD6数据3、3、5、8

3、、11的中位数是( )A3B4C5D67如图,RtABC中,C=90,AC=3,BC=1分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1则S1S2+S3+S1等于()A1B6C8D128下列各坐标表示的点在反比例函数图象上的是( )ABCD9在中,那么的值等于( )ABCD10二次函数yx26x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A(1,0)B(4,0)C(5,0)D(6,0)11点A(3,2)关于x轴的对称点A的坐标为( )A(3,2)B(3,2)C(3,2)D(3,2

4、)12在下列图案中,是中心对称图形的是( )ABCD二、填空题(每题4分,共24分)13如图,直线l1l2,直线l3与l1、l2分别交于点A、B若169,则2的度数为_14如图,将AOB绕点O按逆时针方向旋转45后得到COD,若AOB=15,则AOD=_度15在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为_16如图,P是等边ABC内的一点,若将PAC绕点A按逆时针方向旋转到PAB,则PAP_17把一副普通扑克牌中的13张红桃牌洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的牌上的数字是3的倍数的概率为_.18如图,半圆的半径为4,初始状态下其直径平行于直

5、线现让半圆沿直线进行无滑动滚动,直到半圆的直径与直线重合为止在这个滚动过程中,圆心运动路径的长度等于_三、解答题(共78分)19(8分)投资1万元围一个矩形菜园(如图),其中一边靠墙,另外三边选用不同材料建造墙长24m,平行于墙的边的费用为200元/m,垂直于墙的边的费用为150元/m,设平行于墙的边长为x m(1)设垂直于墙的一边长为y m,直接写出y与x之间的函数关系式;(2)若菜园面积为384m2,求x的值;(3)求菜园的最大面积20(8分)(1)用公式法解方程:x22x10(2)用因式分解法解方程:(x1)(x+3)1221(8分)如图,在平面直角坐标系中,已知ABC的三个顶点的坐标分

6、别是A(1,5)、B(2,0)、C(4,3)(1)请在图中画出ABC关于y轴对称的图形A1B1C1:(2)以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴的左侧画出A2B2C2,并求出A2B2C2的面积22(10分)从三角形(不是等腰三角形)一个顶点引出一条射线 与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线如图1,在中,是的完美分割线,且, 则的度数是 如图2,在中,为角平分线,求证: 为的完美分割线如图2,中,是的完美分割线,且是以为底边的等腰三角

7、形,求完美分割线的长23(10分)已知:如图,在ABC中,点D,E分别在边AB,BC上,BABD=BCBE(1)求证:BDEBCA;(2)如果AE=AC,求证:AC2=ADAB24(10分)如图,AB是O的直径,半径OD与弦AC垂直,若AD,求1的度数25(12分)某服装柜在销售中发现:进货价为每件元,销售价为每件元的某品牌服装平均每天可售出件,现商场决定采取适当的降价措施,扩大销售量,增加盈利,经市场调查发现:如果每件服装降价元,那么平均每天就可多售出件,要想平均每天销售这种服装盈利元,同时又要使顾客得到较多的实惠,那么每件服装应降价多少元?26为弘扬遵义红色文化,传承红色文化精神,某校准备

8、组织学生开展研学活动.经了解,有A遵义会议会址、B苟坝会议会址、C娄山关红军战斗遗址、D四渡赤水纪念馆共四个可选择的研学基地.现随机抽取部分学生对基地的选择进行调查,每人必须且只能选择一个基地.根据调查结果绘制如下不完整的条形统计图和扇形统计图.(1)统计图中_,_;(2)若该校有1500名学生,请估计选择基地的学生人数;(3)某班在选择基地的6名学生中有4名男同学和2名女同学,需从中随机选出2名同学担任“小导游”,请用树状图或列举法求这2名同学恰好是一男一女的概率.参考答案一、选择题(每题4分,共48分)1、D【分析】由向上和向下的次数可求出向下的频率,根据大量重复试验下,随机事件发生的频率

9、可以作为概率的估计值即可得答案【详解】凸面向上的次数为420次,凸面向下的次数为580次,凸面向下的频率为580(420+580)=0.58,大量重复试验下,随机事件发生的频率可以作为概率的估计值,估计抛掷这枚啤酒瓶盖落地后凸面向下的概率约为0.58,故选:D【点睛】本题考查利用频率估计概率,熟练掌握大量重复试验下,随机事件发生的频率可以作为概率的估计值是解题关键2、D【解析】分析:根据轴对称图形和中心对称图形的定义判断即可.详解:A. 不是轴对称图形,是中心对称图形,故此选项错误;B. 不是轴对称图形,是中心对称图形,故此选项错误;C. 是轴对称图形,也是中心对称图形,故此选项错误;D. 是

10、轴对称图形,不是中心对称图形,故此选项正确故选D.点睛:考查轴对称图形和中心对称图形的定义,熟记它们的概念是解题的关键.3、C【分析】根据折叠得出DFEA60,ADDF,AEEF,设BDx,ADDF5x,求出DFBFEC,证DBFFCE,进而利用相似三角形的性质解答即可【详解】解:ABC是等边三角形,ABC60,ABBCAC5,沿DE折叠A落在BC边上的点F上,ADEFDE,DFEA60,ADDF,AEEF,设BDx,ADDF5x,CEy,AE5y,BF2,BC5,CF3,C60,DFE60,EFC+FEC120,DFB+EFC120,DFBFEC,CB,DBFFCE,即,解得:x,即BD,故

11、选:C【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.4、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点如图:过点A作ADx轴于D,过点C作CEx轴于E,根据同角的余角相等求出OAD=COE,再利用“角角边”证明AOD和OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可点C的坐标为(-,1)故选A考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质5、A【解析】利用三角形的内角和定理及两组角分别相等证明正确;根据两组边成比例夹角相等判断正确;利用的相似三角形

12、证得AEC=DBC,又对顶角相等,证得正确;根据ACEDCB证得F、E、B、C四点共圆,由此推出DCFDGC,列比例线段即可证得正确.【详解】正确;在等腰ACD和等腰ECB中AC=AD,EC=EB,DAC=CEB,ACD=ADC=BCE=BEC,DCG=180-ACD-BCE=BEC,DGC=BGE,DCGBEG;正确;ACD+DCG=BCE+DCG,ACE=DCB,ACEDCB;正确;ACEDCB,AEC=DBC,FGE=CGB,FGECGB,GFGB=GCGE;正确;如图,连接CF,由可得ACEDCB,AEC=DBC,F、E、B、C四点共圆,CFB=CEB=90,ACD=ECB=45,DC

13、E=90,DCFDGC,2AD2=DFDG.故选:A.【点睛】此题考查相似三角形的判定及性质,等腰三角形的性质,的证明可通过的相似推出所需要的条件继而得到证明;是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到CFB=CEB=90是解本题关键.6、C【解析】根据中位数的定义进行求解即可.【详解】从小到大排序:3、3、5、8、11,位于最中间的数是5,所以这组数据的中位数是5,故选C.【点睛】本题考查了中位数,熟练掌握中位数的定义以及求解方法是解题的关键.给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中

14、位数;如果n为偶数,位于中间两个数的平均数就是中位数任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数7、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件, 再根据全等三角形的判定定理和面积相等的性质得到S、S、与ABC的关系, 即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示, 过点F作FGAM交于点G, 连接PF. 根据正方形的性质可得: AB=BE, BC=BD,ABC+CBE=CBE+EBD=90,即ABC=EBD.在ABC和EBD中,AB=EB,ABC=EBD, BC=BD所以ABCEBD(SAS),故S=,

15、同理可证,KMETPF,FGKACT,因为QAG=AGF=AQF=90, 所以四边形AQFG是矩形, 则QF/AG, 又因为QP/AC, 所以点Q、P, F三点共线, 故S+S=, S=. 因为QAF+CAT=90,CAT+CBA=90,所以QAF=CBA, 在AQF和ACB中, 因为AQF=ACB,AQ=AC,QAF=CAB所以AQFACB(ASA), 同理可证AQF BCA,故S1S2+S3+S1= 3 1 =6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.8、B【解析】根据反比例函数的性质,分别代入A、B、C、D点,横坐标与纵坐标的积为4即可.【详解】A、(-

16、1)4= -4,故错误.B、14= 4,故正确.C、1-4= -4,故错误.D、2(-2)= -4,故错误.故选B.【点睛】本题考查反比例函数图像上点的坐标特征.9、A【解析】在直角三角形中,锐角的正切等于对边比邻边,由此可得.【详解】解:如图,.故选:A.【点睛】本题主要考查了锐角三角函数中的正切,熟练掌握正切的表示是解题的关键.10、C【解析】根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,其中一个交点的坐标为,则另一个交点的坐标为,故选C【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的

17、对称性质11、D【分析】直接利用关于x轴对称点的性质得出符合题意的答案【详解】解:点A(3,2)关于x轴的对称点A的坐标为:(3,2),故选:D【点睛】本题考查了关于x轴对称的点的坐标特征,关于x轴对称的点:横坐标不变,纵坐标互为相反数12、C【分析】根据中心对称图形的定义进行分析即可.【详解】A、不是中心对称图形故A选项错误;B、不是中心对称图形故B选项错误;C、是中心对称图形故C选项正确;D、不是中心对称图形故D选项错误故选C【点睛】考点:中心对称图形二、填空题(每题4分,共24分)13、111【分析】根据平行线的性质求出3169,即可求出答案【详解】解:直线l1l2,169,3169,2

18、1803111,故答案为111【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,同位角相等14、30【分析】根据旋转的性质得到BOD=45,再用BOD减去AOB即可.【详解】将AOB绕点O按逆时针方向旋转45后,得到COD,BOD=45,又AOB=15,AOD=BODAOB=4515=30.故答案为30.15、1【分析】根据同一时刻物高与影长成正比即可得出结论【详解】解:设这栋楼的高度为hm,在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一栋楼的影长为60m,解得h=1(m)故答案为1【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键1

19、6、60【解析】试题分析:根据旋转图形的性质可得:PAP=BAC=60.考点:旋转图形的性质17、【分析】根据概率的定义求解即可【详解】一副普通扑克牌中的13张红桃牌,牌上的数字是3的倍数有4张概率为故本题答案为:【点睛】本题考查了随机事件的概率18、【分析】由图可知,圆心运动路径的长度主要分两部分求解,从初始状态到垂直状态,圆心一直在一条直线上;从垂直状态到重合状态,圆心运动轨迹是圆周,计算两部分结果,相加即可【详解】由题意知:半圆的半径为4,从初始状态到垂直状态,圆心运动路径的长度=从垂直状态到重合状态,圆心运动路径的长度=即圆心运动路径的总长度= 故答案为【点睛】本题主要考查了弧长公式和

20、圆周公式,正确掌握弧长公式和圆周公式是解题的关键三、解答题(共78分)19、(1)见详解;(2)x=18;(3) 416 m2.【解析】(1)根据“垂直于墙的长度=可得函数解析式;(2)根据矩形的面积公式列方程求解可得;(3)根据矩形的面积公式列出总面积关于x的函数解析式,配方成顶点式后利用二次函数的性质求解可得【详解】(1)根据题意知,yx;(2)根据题意,得(x)x384,解得x18或x32.墙的长度为24 m,x18.(3)设菜园的面积是S,则S(x)xx2x (x25)2.0,当x25时,S随x的增大而增大.x24,当x24时,S取得最大值,最大值为416.答:菜园的最大面积为416

21、m2.【点睛】本题主要考查二次函数和一元二次方程的应用,解题的关键是将实际问题转化为一元二次方程和二次函数的问题20、(1)x;(2)x5或x3【分析】(1)根据公式法即可求出答案;(2)根据因式分解法即可求出答案;【详解】解:(1)a1,b2,c1,8+412,x;(2)(x1)(x+3)12,(x+5)(x3)0,x5或x3;【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型21、(1)详见解析;(2)图详见解析,【分析】(1)利用关于y轴的点的坐标特征写出A1、B1、C1的坐标,然后描点即可;(2)把A、B、C点的横纵坐标都乘以得到A2、B2、C2的坐

22、标,再描点得到A2B2C2,然后计算ABC的面积,再把ABC的面积乘以得到A2B2C2的面积【详解】解:(1)如图,A1B1C1为所作;(2)如图,A2B2C2为所作,ABC的面积35231523,所以A2B2C2的面积【点睛】本题考查了作图轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的22、(1)88;(2)详见解析;(3)【分析】(1)是的完美分割线,且,得ACD=44,BCD=44,进而即可求解;(2)由,得,由平分,得为等腰三角形,结合,即可得到结论;(3)由是的完美分割线,得从而得,设,列出方程,求出x的值,再根据,即可得到

23、答【详解】(1) 是的完美分割线,且,A=ACD=44,A=BCD=44,故答案是:88; ,不是等腰三角形,平分,为等腰三角形,是的完美分割线是以为底边的等腰三角形,是的完美分割线,设,则,【点睛】本题主要考查等腰三角形的性质与相似三角形的判定和性质定理,掌握相似三角形的性质定理,是解题的关键23、 (1)证明见解析;(2)证明见解析.【解析】(1)由BABD=BCBE得,结合B=B,可证ABCEBD;(2)先根据BABD=BCBE,B=B,证明BAEBCD,再证明ADCACB,根据相似三角形的对应边长比例可证明结论.【详解】(1)证明:BABD=BCBE,B=B, BDEBCA; (2)证

24、明:BABD=BCBE, B=B, BAEBCD, ,AE=AC,AEC=B+BAE,ACE=ACD+BCD,B=ACD.BAC=BACADCACB,.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握两三角形相似的判定方法是解题的关键相似三角形的判定方法有:对应角相等,对应边成比例的两个三角形叫做相似三角形;平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;根据两角相等的两个三角形相似;两边对应成比例,且夹角相等的两个三角形相似判定即可;三边对应成比例得两个三角形相似.24、30【分析】利用垂径定理和圆周角定理证得A1ABD,然后根据直角三角形两锐角互余即可求得1的度数【详解】解:半径OD与弦AC垂直,1ABD,半径OD与弦AC垂直,ACB90,ODBC,1D,AD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论