高中数学一轮难题复习 复数典型解答题(学生版)_第1页
高中数学一轮难题复习 复数典型解答题(学生版)_第2页
高中数学一轮难题复习 复数典型解答题(学生版)_第3页
高中数学一轮难题复习 复数典型解答题(学生版)_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、试卷第 =page 1 1页,共 =sectionpages 3 3页一轮难题复习 复数典型解答题1复数的相关概念及运算法则(1)复数zabi(a,bR)的分类z是实数b0;z是虚数b0;z是纯虚数a0且b0.(2)共轭复数复数zabi(a,bR)的共轭复数eq xto(z)abi.(3)复数的模复数zabi(a,bR)的模|z|eq r(a2b2).(4)复数相等的充要条件abicdiac且bd(a,b,c,dR)特别地,abi0a0且b0(a,bR)(5)复数的运算法则加减法:(abi)(cdi)(ac)(bd)i;乘法:(abi)(cdi)(acbd)(adbc)i;除法:(abi)(c

2、di)eq f(acbd,c2d2)eq f(bcad,c2d2)i(cdi0)eq blc(rc)(avs4alco1(其中a,b,c,dR)2复数的几个常见结论(1)(1i)22i.(2)eq f(1i,1i)i,eq f(1i,1i)i.(3)i4n1,i4n1i,i4n21,i4n3i,i4ni4n1i4n2i4n30(nZ)3复数的三角表示式及复数的辐角和辐角的主值一般地,任何一个复数zabi都可以表示成r(cos isin )的形式,其中,r是复数z的模;是以x轴的非负半轴为始边,向量eq o(OZ,sup14()所在射线(射线OZ)为终边的角,叫做复数zabi的辐角,我们规定在0

3、2范围内的辐角的值为辐角的主值,通常记作arg zr(cos isin )叫做复数zabi的三角表示式,简称三角形式abi叫做复数的代数表示式,简称代数形式特别提醒:(1)任何一个不为零的复数的辐角有无限多个值,且这些值相差2的整数倍(2)复数0的辐角是任意的(3)在02范围内的辐角的值为辐角的主值,通常记作arg z,且0arg z2.(4)两个非零复数相等当且仅当它们的模与辐角的主值分别相等4.复数的代数形式化为三角形式的步骤1先求复数的模.2决定辐角所在的象限.3根据象限求出辐角.4求出复数的三角形式.特别提醒:一般在复数三角形式中的辐角,常取它的主值,这使表达式简便,又便于运算,但三角

4、形式辐角不一定取主值.5复数三角形式的乘、除运算若复数z1r1(cos 1isin 1),z2r2(cos 2isin 2),且z1z2,则(1)z1z2r1(cos 1isin 1)r2(cos 2isin 2)r1r2cos(12)isin(12)(2)eq f(z1,z2)eq f(r1cos 1isin 1,r2cos 2isin 2)eq f(r1,r2) cos(12)isin(12)即:(1)乘法法则:模相乘,辐角相加(2)除法法则:模相除,辐角相减(3)复数的n次幂,等于模的n次幂,辐角为n倍6.复数三角形式乘、除运算的几何意义两个复数z1,z2相乘时,先分别画出与z1,z2对

5、应的向量 eq o(OZ1,sup14(), eq o(OZ2,sup14(),然后把向量 eq o(OZ1,sup14()绕点O按逆时针方向旋转角2如果20,就要把 eq o(OZ1,sup14()绕点O按顺时针方向旋转角|2|,再把它的模变为原来的r2倍,得到向量 eq o(OZ,sup14(), eq o(OZ,sup14()表示的复数就是积z1z2.7平面向量的概念名称定义记法零向量长度为0的向量叫做零向量0单位向量长度等于1个单位的向量,叫做单位向量相等向量长度相等且方向相同的向量叫做相等向量ab说明,任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关在平面

6、上,两个长度相等且方向一致的有向线段表示同一个向量平行向量方向相同或相反的非零向量叫做平行向量ab规定:零向量与任何向量都平行0a说明:任一组平行向量都可以平移到同一直线上,因此,平行向量也叫有线向量8.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数1,2,使a1e12e2.我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底9向量a与b的夹角已知两个非零向量a和b.作eq o(OA,sup6()a,eq o(OB,sup6()b,则AOB(0180)叫做向量a与b的夹角当0时,a与b同向;当180时,a与b反向如果a与

7、b的夹角是90,我们说a与b垂直,记作ab.10平面向量的数量积(1)若a,b为非零向量,夹角为,则ab|a|b|cos .(2)设a(x1,y1),b(x2,y2),则abx1x2y1y2.(3)ab的几何意义:数量积ab等于a的长度|a|与b在a的方向上的投影|b|cos 的乘积11两个非零向量平行、垂直的充要条件若a(x1,y1),b(x2,y2),则(1)abab(b0)x1y2x2y10.(2)abab0 x1x2y1y20.12利用数量积求长度(1)若a(x,y),则|a|eq r(aa)eq r(x2y2).(2)若A(x1,y1),B(x2,y2),则|eq o(AB,sup6

8、()|eq r(x2x12y2y12).13利用数量积求夹角设a,b为非零向量,若a(x1,y1),b(x2,y2),为a与b的夹角,则cos eq f(ab,|a|b|)eq f(x1x2y1y2,r(xoal(2,1)yoal(2,1) r(xoal(2,2)yoal(2,2).14三角形“四心”向量形式的充要条件设O为ABC所在平面上一点,角A,B,C所对的边长分别为a,b,c,则(1)O为ABC的外心|eq o(OA,sup6()|eq o(OB,sup6()|eq o(OC,sup6()|eq f(a,2sin A).(2)O为ABC的重心eq o(OA,sup6()eq o(OB,sup6()eq o(OC,sup6()0.(3)O为ABC的垂心eq o(OA,sup6()eq o(OB,sup6()eq o(OB,sup6()eq o(OC,sup6()eq o(OC,sup6()eq o(OA,sup6().(4)O为ABC的内心aeq o(OA,sup6()b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论