




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷
2、和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,点是中边的中点,于,以为直径的经过,连接,有下列结论:;是的切线.其中正确的结论是( )ABCD2一元钱硬币的直径约为24 mm,则用它能完全覆盖住的正六边形的边长最大不能超过( )A12 mmB12 mmC6 mmD6 mm3点是反比例函数的图象上的一点,则( )AB12CD14若关于的一元二次方程有实数根,则实数m的取值范围是( )ABCD5一元二次方程x22kx+k2k+20有两个不相等的实数根,则k的取值范围是()Ak2Bk2Ck2Dk26对于题目“抛物线l1:(1x2)与直线l2:ym(m为整数)只有一个交点,确定m的值”;
3、甲的结果是m1或m2;乙的结果是m4,则()A只有甲的结果正确B只有乙的结果正确C甲、乙的结果合起来才正确D甲、乙的结果合起来也不正确7已知,那么ab的值为( )ABCD8方程x(x1)0的解是( )Ax1Bx0Cx11,x20D没有实数根9关于的一元二次方程,则的条件是( )ABCD10一元二次方程的一根是1,则的值是( )A3B-3C2D-2二、填空题(每小题3分,共24分)11计算:cos245-tan30sin60=_12二次函数yx2+4x+a图象上的最低点的横坐标为_13如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,点B、E在第
4、一象限,若点A的坐标为(4,0),则点E的坐标是_14如图,在平面直角坐标系中,以点为圆心画圆,与轴交于;两点,与轴交于两点,当时,的取值范围是_.15如图,将RtABC绕着顶点A逆时针旋转使得点C落在AB上的C处,点B落在B处,联结BB,如果AC4,AB5,那么BB_162019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则中奖总值至少300元的概率为_17若2是一元二次方程x2+mx4m0的一个根,则另一个根是_18在平面直角坐标系中,已知,若线段与互相平分,则点的坐标为_
5、.三、解答题(共66分)19(10分)如图为一机器零件的三视图(1)请写出符合这个机器零件形状的几何体的名称;(2)若俯视图中三角形为正三角形,那么请根据图中所标的尺寸,计算这个几何体的表面积(单位:cm2)20(6分)若边长为6的正方形ABCD绕点A顺时针旋转,得正方形ABCD,记旋转角为a(I)如图1,当a60时,求点C经过的弧的长度和线段AC扫过的扇形面积;()如图2,当a45时,BC与DC的交点为E,求线段DE的长度;()如图3,在旋转过程中,若F为线段CB的中点,求线段DF长度的取值范围21(6分)一玩具厂去年生产某种玩具,成本为元/件,出厂价为元/件,年销售量为万件今年计划通过适当
6、增加成本来提高产品档次,以拓展市场若今年这种玩具每件的成本比去年成本增加倍,今年这种玩具每件的出厂价比去年出厂价相应提高倍,则预计今年年销售量将比去年年销售量增加倍(本题中)用含的代数式表示,今年生产的这种玩具每件的成本为_元,今年生产的这种玩具每件的出厂价为_元求今年这种玩具的每件利润元与之间的函数关系式设今年这种玩具的年销售利润为万元,求当为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润(每件玩具的出厂价-每件玩具的成本)年销售量22(8分)如图,在RtABC中,C=90,AB=10cm,BC=6cm动点P,Q从点A同时出发,点P沿AB向终点B运动;点Q沿ACCB向
7、终点B运动,速度都是1cm/s当一个点到达终点时,另一个点同时停止运动设点P运动的时间为t(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为S(cm2)(1)AC=_cm;(2)当点P到达终点时,BQ=_cm;(3)当t=5时,s=_;当t=9时,s=_;(4)求S与t之间的函数解析式23(8分)解方程:(1)x22x+1=0 (2)2x23x+1=024(8分)抛物线的对称轴为直线,该抛物线与轴的两个交点分别为和,与轴的交点为,其中(1)写出点的坐标_;(2)若抛物线上存在一点,使得的面积是的面积的倍,求点的坐标;(3)点是线段上一点,过点作轴的垂线交抛物线于点,求线段长度
8、的最大值 25(10分)如图,矩形纸片ABCD,将AMP和BPQ分别沿PM和PQ折叠(APAM),点A和点B都与点E重合;再将CQD沿DQ折叠,点C落在线段EQ上点F处(1)判断AMP,BPQ,CQD和FDM中有哪几对相似三角形?(不需说明理由)(2)如果AM1,sinDMF,求AB的长26(10分)(1)计算:2cos60+4sin60tan306cos245(2)解方程:参考答案一、选择题(每小题3分,共30分)1、D【分析】由直径所对的圆周角是直角,即可判断出选项正确;由O为AB的中点,得出AO为AB 的一半,故AO为AC的一半,选项正确;由OD为三角形ABC的中位线,根据中位线定理得到
9、OD与AC平行,由AC与DE垂直得出OD与DE垂直,选项正确;由切线性质可判断正确.【详解】解:AB是圆的直径,选项正确;连接OD,如图,D为BC的中点,O为AB的中点,DO为的中位线,又,,DE为圆O的切线,选项正确;又OB=OD,,AB为圆的直径,选项正确;AD垂直平方BC,AC=AB,2OA=AB,选项正确故答案为:D.【点睛】本题考查的知识点主要是圆的切线的判定及其性质,圆周角定理及其推论,充分理解各知识点并能熟练运用是解题的关键.2、A【解析】试题解析:已知圆内接半径r为12mm,则OB=12,BD=OBsin30=12=6,则BC=26=12,可知边长为12mm,就是完全覆盖住的正
10、六边形的边长最大故选A3、A【解析】将点代入即可得出k的值【详解】解:将点代入得,解得k=-12,故选:A【点睛】本题考查反比例函数图象上点,若一个点在某个函数图象上,则这个点一定满足该函数的解析式4、B【分析】因为一元二次方程有实数根,所以 ,即可解得【详解】一元二次方程有实数根解得故选B【点睛】本题考查一元二次方程根的判别式,掌握方程根的个数与根的判别式之间关系是解题关键5、D【分析】根据一元二次方程有两个不相等的实数根,得即可求解.【详解】一元二次方程x22kx+k2k+2=0有两个不相等的实数根,解得k2.故选D.【点睛】本题考查一元二次方程与参数的关系,列不等式是解题关键.6、C【分
11、析】画出抛物线l1:y(x1)2+4(1x2)的图象,根据图象即可判断【详解】解:由抛物线l1:y(x1)2+4(1x2)可知抛物线开口向下,对称轴为直线x1,顶点为(1,4),如图所示:m为整数,由图象可知,当m1或m2或m4时,抛物线l1:y(x1)2+4(1x2)与直线l2:ym(m为整数)只有一个交点,甲、乙的结果合在一起正确,故选:C【点睛】本题考查了二次函数图象与一次函数图象的交点问题,作出函数的图象是解题的关键7、C【分析】利用平方差公式进行计算,即可得到答案.【详解】解:,;故选择:C.【点睛】本题考查了二次根式的乘法运算,解题的关键是熟练运用平方差公式进行计算.8、C【解析】
12、根据因式分解法解方程得到x=0或x1=0,解两个一元一次方程即可.【详解】解:x(x1)0 x=0或x1=0 x11,x20,故选C.【点睛】本题考查因式分解法解一元二次方程,熟练掌握一元二次方程的解法是关键.9、C【解析】根据一元二次方程的定义即可得【详解】由一元二次方程的定义得解得故选:C【点睛】本题考查了一元二次方程的定义,熟记定义是解题关键10、A【解析】将 代入方程,求出的值【详解】将 代入方程得解得故答案为:A【点睛】本题考查了求一元二次方程系数的问题,掌握代入求值法求解的值是解题的关键二、填空题(每小题3分,共24分)11、0【分析】直接利用特殊角的三角函数值代入进而得出答案【详
13、解】= .故答案为0.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键12、1【解析】直接利用二次函数最值求法得出函数顶点式,进而得出答案【详解】解:二次函数yx1+4x+a(x+1)14+a,二次函数图象上的最低点的横坐标为:1故答案为1【点睛】此题主要考查了二次函数的最值,正确得出二次函数顶点式是解题关键13、(6,6)【分析】利用位似变换的概念和相似三角形的性质进行解答即可.【详解】解:正方形OABC与正方形ODEF是位似图形,点O为位似中心,位似比为2:3,即解得,OD6,OF6,则点E的坐标为(6,6),故答案为:(6,6)【点睛】本题考查了相似三角形、正方形的性
14、质以及位似变换的概念,掌握位似和相似的区别与联系是解答本题的关键.14、【解析】作MECD于E,MFAB于F,连接MA、MC.当CD=6和CD=时在中求出半径MC,然后在 中可求的值,于是范围可求.【详解】解:如图1,当CD=6时,作MECD于E,MFAB于F,连接MA、MC, , ME=4,MF=3,MECD, CD=6,CE=3,MA=MC=5,MFAB,=,如图2,当CD=时,作MECD于E,MFAB于F,连接MA、MC, ,ME=4,MF=3,MECD, CD=,CE=,MA=MC=8,MFAB,=,综上所述,当时, .故答案是:.【点睛】本题考查了三角函数在坐标系和圆中的应用,作辅助
15、线构造直角三角形利用垂径定理求出半径是解题的关键.15、【分析】根据旋转的性质和勾股定理,在RtBCB中,求出BC,BC即可解决问题【详解】解:在RtABC中,AC4,AB5,C90,BC3,ACAC4,BCBC3,BCABAC541,BCB90,BB,故答案为【点睛】此题考查的是旋转的性质和勾股定理,掌握旋转的性质和利用勾股定理解直角三角形是解决此题的关键16、【分析】有15张奖券中抽取2张的所有等可能结果数为种,其中中奖总值低于300元的有种知中奖总值至少300元的结果数为种,再根据概率公式求解可得【详解】解:从15张奖券中抽取2张的所有等可能结果数为1514210种,其中中奖总值低于30
16、0元的有4312种,则中奖总值至少300元的结果数为21012198种,所以中奖总值至少300元的概率为,故答案为:【点睛】本题主要考查列表法与树状图法,解题的关键根据题意得出所有等可能的结果数和符合条件的结果数17、-4【分析】将x=2代入方程求出m的值,再解一元二次方程求出方程的另一个根【详解】解:将x=2代入方程得,解得,一元二次方程为解方程得:方程得另一个根为-4故答案为:-4 【点睛】本题考查的知识点是解一元二次方程,属于基础题目,比较容易掌握18、【分析】根据题意画出图形,利用平行四边形的性质得出D点坐标【详解】解:如图所示:A(2,3),B(0,1),C(3,1),线段AC与BD
17、互相平分,D点坐标为:(5,3),故答案为:(5,3)【点睛】此题考查了平行四边形的性质,图形与坐标,正确画出图形是解题关键三、解答题(共66分)19、(1)直三棱柱;(2) 【解析】试题分析:(1)有2个视图的轮廓是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么该几何体为三棱柱;(2)根据正三角形一边上的高可得正三角形的边长,表面积=侧面积+2个底面积=底面周长高+2个底面积试题解析:(1)符合这个零件的几何体是直三棱柱;(2)如图,ABC是正三角形,CDAB,CD=2, 在RtADC中,解得AC=4,S表面积=423+242 =(24+8)(cm2).20、(I)12;()DE66
18、;()11DF1+1【分析】()根据正方形的性质得到ADCD6,D90,由勾股定理得到AC6,根据弧长的计算公式和扇形的面积公式即可得到结论;()连接BC,根据题意得到B在对角线AC上,根据勾股定理得到AC6,求得BC66,推出BCE是等腰直角三角形,得到CEBC126,于是得到结论;()如图1,连接DB,AC相交于点O,则O是DB的中点,根据三角形中位线定理得到FOAB1,推出F在以O为圆心,1为半径的圆上运动,于是得到结论【详解】解:()四边形ABCD是正方形,ADCD6,D90,AC6,边长为6的正方形ABCD绕点A顺时针旋转,得正方形ABCD,CAC60,的长度2,线段AC扫过的扇形面
19、积12;()解:如图2,连接BC,旋转角BAB45,BAD45,B在对角线AC上,BCAB6,在RtABC中,AC6,BC66,CBE180ABC90,BCE904545,BCE是等腰直角三角形,CEBC126,DECDEC6(126)66;()如图1,连接DB,AC相交于点O,则O是DB的中点,F为线段BC的中点,FOAB1,F在以O为圆心,1为半径的圆上运动,DO1,DF最大值为1+1,DF的最小值为11,DF长的取值范围为11DF1+1【点睛】本题考查了旋转的综合题,正方形性质,全等三角形判定与性质,三角形中位线定理()问解题的关键是利用中位线定理得出点P的轨迹21、107x 126x
20、【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+100.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+120.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)-(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价-每件玩具的成本)年销售量,得到w=2(1+x)(2-x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案【详解】107x 126xy=(126x)(107x)y=2xw=2(1x)(2x)=2x22x4w=2
21、(x0.5)24.520,0 x11,w有最大值,当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.【点睛】本题考查了二次函数的应用,解题的关键是根据题意列出方程进行求解.22、(1)8;(2)4;(3),22;(4)【分析】(1)根据勾股定理求解即可;(2)先求出点P到达中点所需时间,则可知点Q运动路程,易得CQ长,;(3)作PDAC于D,可证APDABC,利用相似三角形的性质可得PD长,根据面积公式求解即可; 作PEAC于E,可证PBEABC,利用相似三角形的性质可得PE长,用可得s的值;(4)当0t8时,作PDAC于D,可证AP
22、DABC,可用含t的式子表示出PD的长,利用三角形面积公式可得s与t之间的函数解析式;当8t10时,作PEAC于E,可证PBEABC,利用相似三角形的性质可用含t的式子表示出PE长,用可得s与t之间的函数解析式.【详解】解:(1)在RtABC中,由勾股定理得 (2)设点P运动到终点所需的时间为t,路程为AB=10cm,则 点Q运动的路程为10cm,即 cm所以当点P到达终点时,BQ=4cm.(3)作PDAC于D ,则 A=AADP=C=90,APDABC即如图,作PEAC于E,则B=BBEP=C=90,PBEABC即(4)当0t8时,如图作PDAC于DA=AADP=C=90,APDABC即当8
23、t10时,如图作PEAC于EB=BBEP=C=90,PBEABC即综上所述:【点睛】本题考查了二次函数在三角形动点问题中的应用,涉及的知识点有勾股定理、相似三角形的判定与性质,灵活的应用相似三角形对应线段成比例的性质求线段长是解题的关键.23、(1)x1=x2=1 ;(2)x1=1,x2=【分析】(1)利用配方法解一元二次方程即可得出答案;(2)利用十字相乘法解一元二次方程即可得出答案.【详解】解:(1)x22x+1=0(x-1)2=0 x1=x2=1(2)2x23x+1=0(2x-1)(x-1)=0 x1=1,x2=【点睛】本题考查的是解一元二次方程,解一元二次方程主要有以下几种解法:直接开方法、配方法、公式法和因式分解法.24、(1);(2)点的坐标为或;(3)MD长度的最大值为【分析】(1)抛物线的对称轴为x=1,点A坐标为(-1,0),则点B(3,0),即可求解;(2)由SPOC=2SBOC,则x=2OB=6,即可求解;(3)设:点M坐标为(x,x-3),则点D坐标为(x,x2-2x-3),则MD=x-3-x2+2x+3,即可求解【详解】解:(1)抛物线的对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024游泳救生员行业规范考题及答案
- 2024篮球裁判员考试资源库与试题及答案
- 救生员考试适用知识技巧及答案
- 全面提升裁判员职业技能的试题及答案
- 意识到2024篮球裁判员考试重要性试题及答案
- 修炼体育经纪人核心能力的2024年考试试题与答案
- 了解体育经纪人考试评分标准 试题及答案
- 2024年裁判员考试监控机制试题及答案
- 2024篮球裁判员考试成功秘籍与试题及答案
- 模具设计师资格考试中的关键知识回顾试题及答案
- 监理公司员工手册
- 注塑产品工艺流程图
- 《公务员法》专题讲座
- 软件工程介绍
- 功能性动作筛查(FMS)
- 电子商务的区块链技术应用
- 船用起重机作业安全操作规程培训课件
- 挺膺担当主题团课
- 煤矿安全监控系统施工方案
- 中国地图素材课件
- 动火作业专项安全施工方案
评论
0/150
提交评论