回归分析与经验公式拟合和分析步骤_第1页
回归分析与经验公式拟合和分析步骤_第2页
回归分析与经验公式拟合和分析步骤_第3页
回归分析与经验公式拟合和分析步骤_第4页
回归分析与经验公式拟合和分析步骤_第5页
已阅读5页,还剩57页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、回归分析与经验公式拟合和分析步骤主菜单结束教学目标回归分析是处理变量之间相关关系的一种数理统计方法,也是广泛用于获得数学表达式的较好方法。本章介绍测量中常用的一元与多元线性回归以及一元非线性回归的基本方法。 主菜单结束教学重点和难点 回归分析的基本概念一元线性回归分析多元线性回归分析非线性回归分析主菜单结束第一节回归分析的基本概念 变量间的关系可分为函数关系和相关关系。本节介绍这两种关系,并对回归分析的一些基本概念作一个简要的介绍。主菜单结束4变量间的函数关系 1、是一一对应的确定关系2、设有两个变量和,变量随变量一起变化,并完全依赖于,当变量某个数值时,依确定的关系取相应的值,则称是的函数,

2、记为,其中称为自变量,称为因变量如以速度作匀速运动的物体,走过的距离与时间之间,有如下的函数关系 主菜单结束5变量间的相关关系 1、变量间关系不能用函数关系精确表达3、当变量取某个数值时,变量的值可能有几个2、一个变量的取值不能由另一个变量惟一确定如人的身高( )与体重( )之间的关系 主菜单结束6什么是回归分析?3、利用所求的关系式,根据一个或几个变量的值,预测或控制另一个变量的值,并要知道这种预测或控制可达到的精密度。 一种处理变量间相关关系的数理统计方法。他主要解决以下几个问题1、从一组样本数据出发,确定变量之间的数学关系式2、对这些关系式的可信程度进行各种统计检验,并从影响某一特定变量

3、的诸多变量中找出哪些变量的影响显著,哪些不显著主菜单结束回归模型的类型回归模型一元回归线性回归非线性回归线性回归非线性回归多元回归一个自变量两个及两个以上自变量主菜单结束回归模型1、回答“变量之间是什么样的关系?”2、方程中运用1个数字的因变量1个或多个数字的或分类的因变量3、主要用于预测或估计主菜单结束第二节一元线性回归分析主菜单结束一、一元线性回归方程主菜单结束一元线性回归模型概念1、当只涉及一个自变量时称为一元回归,若因变量与自变量之间为线性关系时称为一元线性回归3、描述因变量如何依赖于自变量和误差项的方程称为回归模型。2、对于具有线性关系的两个变量,可以用一个线性方程来表示它们之间的关

4、系主菜单结束由实验获得两个变量和的一组样本数据,构造如下一元线性回归模型 一元线性回归模型概念 模型中,是的线性函数部分加上误差项线性部分反映了由于的变化而引起的变化误差项是随机变量反映了除和之间的线性关系之外的随机因素对的影响是不能由和之间的线性关系所解释的变异性和称为模型的参数主菜单结束1、误差项是一个期望值为的随机变量,即。对于一个给定的值,的期望值为2、对所有的值,的方差都相同3、误差项是一个服从正态分布的随机变量,且相互独立。即独立性意味着对于一个特定的值,它所对应的与其它值所对应的不相关对于一个特定的值,它所对应的值与其它值所对应的不相关一元线性回归模型基本假定 主菜单结束1、描述

5、的平均值或期望值如何依赖于的方程称为回归方程2、简单线性回归方程的形式如下方程的图示是一条直线,因此也称为直线回归方程是回归直线在轴上的截距,是当时的期望值是直线的斜率,表示当每变动一个单位时,的平均变动值回归方程概念要点主菜单结束1、总体回归参数和是未知的,必须利用样本数据去估计他们2、用样本统计量和代替回归方程中的未知参数和,这时就得到了经验的回归方程3、一元线性回归的经验的回归方程 是回归直线在轴上的截距是直线的斜率,它表示对于给定的的值,是的估计值,也表示当每变动一个单位时,的平均变动值经验的回归方程主菜单结束式中根据最小二乘法的要求,可得和的计算公式主菜单结束二、回归效果F检验主菜单

6、结束偏差平方和的分解 测量值之间的差异来源于两个方面由于自变量取值的不同造成的除以外的其它因素(如对的非线性影响、测量误差等)的影响 对一个具体的观测值来说,变异的大小可以通过该实际观测值与其均值之差来表示主菜单结束偏差平方和的分解图示主菜单结束两端平方后求和得到总偏差平方和 回归平方和 残余平方和 三个平方和的关系主菜单结束自由度计算公式在总的偏离中除了对线性影响之外的其它因素而引起变化的大小 在总的偏差中因和的线性关系而引起变化的大小 总偏差平方和 回归平方和 残余平方和 意义反映因变量的n个观测值与其均值的总偏差三个平方和的意义主菜单结束回归方程的显著性检验1、检验自变量和因变量之间的线

7、性关系是否显著2、具体方法是将回归平方和和残余平方和加以比较,应用F检验来分析二者之间的差别是否显著如果是显著的,两个变量之间存在线性关系如果不显著,两个变量之间不存在线性关系主菜单结束2、计算检验统计量 3、在给定显著性水平 下,由分布表查得临界值 。4、作出决策。若,拒绝,则认为该回归效果显著。反之,则不显著。即检验步骤1、提出假设线性关系不显著主菜单结束估计残余标准误差4、残余标准差的计算公式 1、表征除了与线性关系之外其它因素影响值偏离的大小 2、反映实际观测值在回归直线周围的分散状况3、从另一个角度说明了回归直线的拟合程度主菜单结束偏离回归残余总和平方和自由度标准差统计量置信限 显著

8、否显著否显著否方差分析表主菜单结束三、回归系数的不确定度与回归方程的稳定性主菜单结束回归系数的不确定度1、回归系数的不确定度是描述回归系数的分散性 2、回归系数和的标准不确定度的计算公式3、回归系数和的协方差的计算公式式中,是残余标准差主菜单结束回归方程的稳定性 1、回归值的波动大小,波动愈小,回归方程的稳定性愈好。 2、回归值的波动大小的计算公式标准不确定度来表示。 回归值的波动大小不仅与剩余标准差s有关,而且还取决于试验次数n及自变量取值范围。 提高回归方程中各估计量稳定性的方法(1) 提高观察数据本身的准确度(2) 尽可能增大观测数据中自变量的取值范围 (3) 增加观测次数 (4) 减小

9、残余误差,即拟定合适回归方程使其尽可能合乎实际数据的变化规律 主菜单结束四、回归预测值及其不确定度主菜单结束回归预测值及其不确定度、利用估计的回归方程,对于自变量的一个给定值,求出因变量的一个估计值,就是回归的预测值的标准不确定度来表述 的扩展不确定度来表述 2、预测值与实际值之间存在偏差,因此给出预测值时,还必须给出其不确定度。有以下两种表示方式主菜单结束【例9-1】试对下表所列实验数据做直线拟合,并作方差分析和预测。 180200145165123110191205104100141135151180190220134135144160110130153145141125190190108

10、110155160204235190210158130177185150170161145107115177205121125165195180240143160151135154150127135147155116100115120主菜单结束【解】直线拟合计算 故有直线拟合主菜单结束方差分析 偏离回归残余总和平方和自由度标准差统计量置信限 高度显著410379057500943233主菜单结束预测 对于,查分布表得 故有主菜单结束回归直线及预测区间主菜单结束第三节多元线性回归分析主菜单结束一、多元线性回归方程主菜单结束多元线性回归模型概念要点 1、一个因变量与两个及两个以上自变量之间的回归2

11、、描述因变量如何依赖于自变量和误差项的方程称为多元线性回归模型3、涉及个自变量的多元线性回归模型可表示为是参数是被称为误差项的随机变量是的线性函数加上误差项说明了包含在里面但并不能被个自变量的线性关系所解释的变异性主菜单结束多元线性回归模型概念要点 对于组实际观测数据,多元线性回归模型可表示为式中主菜单结束多元线性回归模型基本假定1、自变量是确定性变量,不是随机变量2、随机误差项的期望值为,且方差都相同3、误差项是一个服从正态分布的随机变量,即,且相互独立主菜单结束多元线性回归方程概念要点1、描述的平均值或期望值如何依赖于的方程称为多元线性回归方程2、多元线性回归方程的形式为称为偏回归系数表示

12、假定其他变量不变,当每变动一个单位时,的平均变动值主菜单结束多元线性回归的估计(经验)方程1、总体回归参数是未知的,利用样本数据去估计2、用样本统计量代替回归方程的未知数,即得到估计的回归方程是的估计值是的估计值主菜单结束参数的最小二乘估计主菜单结束计算过程 主菜单结束二、线性回归效果检验主菜单结束回归方程的显著性检验1、检验因变量和所有的自变量之间的是否存在一个显著的线性关系,也被称为总体的显著性检验2、具体方法是将回归平方和和残余平方和加以比较,应用F检验来分析二者之间的差别是否显著如果是显著的,因变量与自变量之间存在线性关系如果不显著,因变量与自变量之间不存在线性关系主菜单结束检验的步骤

13、2、计算检验统计量 1、提出假设线性关系不显著至少有一个不等于 3、在给定显著性水平 下,由分布表查得临界值 4、作出决策。若,拒绝,则认为该回归效果显著。反之,则不显著。主菜单结束偏离回归残余总和平方和自由度标准差统计量置信限 显著否方差分析表 主菜单结束三、每个自变量在多元回归中所起的作用主菜单结束 1、一个多元线性回归方程是显著的,并不意味着每个自变量 对因变量的影响都是重要的,可能其中有某些变量的作用很小。 2、用偏回归平方和来考察每个特定因素在总回归中所起的作用偏回归平方和 回归平方和,反映了所有 个回归自变量对因变量 的总影响 舍弃某,其余个回归自变量可拟合出元线性回归方程,其相应

14、的回归平方和,它反映了其余个回归自变量所起的总作用。 表示出单独对回归因变量的影响 主菜单结束偏回归平方和的实用计算公式 原元回归的正规方程系数矩阵L的逆矩阵 中的第列元素 回归方程的回归系数 1、直接利用定义式计算偏回归平方和非常繁杂2、可利用实用公式计算主菜单结束分析步骤(1) 计算每个自变量的偏回归平方和(2) 凡是偏回归平方和大的变量,一定是对有重要影响的因素。可用残余平方和对它进行检验。计算统计量当时,则认为变量对的影响在水平上显著 (3) 偏回归平方和小的变量,不一定不显著。但偏回归平方和最小的那个变量,肯定是所有变量中对作用最小的一个,假如此时变量检验结果又不显著,那可以将该变量剔除。剔除一个变量后,得重新建立元新回归方程,计算回归系数和偏回归平方和。 主菜单结束在对的多元回归中,当取消一个变量后,个变量新的回归系数(),与原来的回归系数之间有如下关系 新老回归系数间的关系,原元回归的正规方程系数矩阵L的逆矩阵 中的元素 主菜单结束第四节 非线性回归分析主菜单结束非线性回归分析 5、 比较不同模型拟合所得的原剩余平方和,选最小者即为所求。 2、选择回归模型。根据实验数据散点图分布的特点以及所掌握的物理规律,选择可线化函数的模型。3、作线性化变量变换后,按一元线性回归问题计算待定的系数、原的剩余平方和。、如果对拟合结果不满意,再选择其它模

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论