试验一离散时间信号与系统分析_第1页
试验一离散时间信号与系统分析_第2页
试验一离散时间信号与系统分析_第3页
试验一离散时间信号与系统分析_第4页
试验一离散时间信号与系统分析_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、实验一 离散时间信号与系统分析一、实验目的.掌握离散时间信号与系统的时域分析方法。.掌握序列傅氏变换的计算机实现方法,利用序列的傅氏变换对离散信号、系统及系 统响应进行频域分析。.熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。二、实验原理.离散时间系统一个离散时间系统是将输入序列变换成输出序列的一种运算。若以T来表示这种运算,则一个离散时间系统可由下图来表示:T图离散时间系统输出与输入之间关系用下式表示y(n) Tx(n)离散时间系统中最重要、最常用的是线性时不变系统。.离散时间系统的单位脉冲响应设系统输入x(n)(n),系统输出y(n)的初始状态为零,这是系统输出用h

2、(n)表示,即h(n) T (n),则称h(n)为系统的单位脉冲响应。可得到:y(n) x(m)h(n m) x(n) h(n) m该式说明线性时不变系统的响应等于输入序列与单位脉冲序列的卷积。.连续时间信号的采样采样是从连续信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了解采样前后信号时域何频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变 换、傅氏变换、Z变换和序列傅氏变换之间关系的理解。对一个连续时间信号进行理想采样的过程可以表示为信号与一个周期冲激脉冲的乘积,即:xa(t)xa(t) T(t)其中,斗是连续信号Xa(t)的理想采样,丁是周期冲激脉冲T(t) (t

3、 mT)m设模拟信号 xa(t),冲激函数序列 T(t)以及抽样信号0a (t)的傅立叶变换分别为Xa(j )、M(j )和&(j ),即Xa(j ) FXa(t)M(j ) F T(t)X(j ) FXa根据连续时间信号与系统中的频域卷积定理,式(2.59)表示的时域相乘,变换到频域为卷积运算,即&(j )六M(j ) Xa(j )其中Xa(j ) FXa(t) Xa(t)e tdt由此可以推导出双(j ) 1 Xa(j jk s) T k由上式可知,信号理想采样后的频谱是原来信号频谱的周期延拓,其延拓周期等于采样频率。根据香农定理,如果原信号是带限信号,且采样频率高于原信号最高频率的2倍,

4、则采样后的离散序列不会发生频谱混叠现象。.有限长序列的分析对于长度为N的有限长序列,我们只观察、分析在某些频率点上的值。x(n)x(n),0 n N 10其它n般只需要在02之间均匀的取 M个频率点,计算这些点上的序列傅立叶变换:X(ej k)n k x(n)en 0其中, k 2 k/M , k 0,1, ,M 1。X(ej )是一个复函数,它的模就是幅频特 性曲线。三、主要实验仪器及材料微型计算机、Matlab软件(或TC编程环境)。四、实验内容.知识准备认真复习离散信号与系统、单位脉冲响应、抽样定理等有关内容,阅读本实验原理与方 法。.编制信号产生子程序,用于产生实验中要用到的信号序列(

5、1)单位脉冲序列单位脉冲序列Xb(n)(n)1,n , n (2)系统单位脉冲响应序列hb(n)(n) 2.5 (n 1) 2.5 (n 2) (n 3)(3)理想采样信号序列对信号xa(t) Ae tcos( t)u(t)进行理想采样,可以得到一个理想的采样信号序列x(nT) Ae nT cos( nT)u(n), n 1。其中A为幅度因子, 是衰减因子, 是频率,T为采样周期。这几个参数要在实验过程中输入,以产生不同的x(n) o首先产生理想采样信号序列xa(n),使A = 444.128, a =5 2 2 , =52 。然后改变参数A=1, a=.4,=2.734,产生理想采样信号序列

6、xa(n)。.离散信号、系统和系统响应的分析观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号通过系统以后的响 应。比较系统响应和信号的时域和幅频特性。注意它们之间有无差异,绘出图形。.分析理想采样信号序列的特性产生理想采样信号序列,使:(1)首先选用采样频率为100Hz, T=1/100,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并作记录。(2)改变采样频率为300Hz , T=1/30 ,观察所得理想采样信号的幅频特性曲线的变化, 并作记录。(3)进一步减小采样频率为20Hz, T=1/20,观察频谱混叠现象是否明显存在,说明原因,并

7、记录此时的幅频特性曲线。.卷积定律的验证。采用参数 A = 444.128, a =50 22 ,=50 万 ,T=1/1000 ,将 xa(n)和系统 hb(n)的傅氏变换相乘,直接求得Y(ej k ),将得到的幅频特性曲线和先求y(n)后再求得的幅频特性曲线进行比较,观察二者有无差异。验证卷积定律。五、思考题.线性时不变系统的输出的长度与输入和系统的单位冲激响应的长度有什么关系?.对信号进行理想抽样时,抽样频率不同,相应理想采样序列傅立叶变换频谱的数字频率度量是否都相同7它们所对应的模拟频率是否相同?为什么?六、实验报告要求.简述实验原理及目的。.总结在上机实验内容中要求比较时域、幅频曲线

8、差异部分内容的结果,定性分析它们正确与否,并简要说明这些结果的含义。.总结实验所得主要结论。.简要回答思考题。附:实验一 离散时间系统分析 参考程序部分参考程序四、2. (1) , (2)的参考程序:%单位脉冲序列xb(n)的时域和幅频特性%在MatLab中,这一函数可以用zeros函数实现:n=0:50;x=zeros(1,51);%MatLab中数组的下标从 1开始x(1)=1;close all;subplot(3,1,1);stem(n,x);title(,单位冲击信号序列x(n),);k=-25:25;X=x*(exp(-j*pi/25)A(n*k);magX=abs(X);subp

9、lot(3,1,2);stem(n,magX);title(,单位冲击信号序列的幅度谱,);angX=angle(X);subplot(3,1,3);stem(n,angX);title(,单位冲击信号序列的相位谱,);%以下是hb(n)的时域和幅频特性n=1:50;x=zeros(1,50);x(1)=1;x(2)=2.5;x(3)=2.5;x(4)=1;close all;subplot(3,1,1);stem(x);title(系统单位脉冲响应信号序列,);k=-24:25;X=x*(exp(-j*pi/25).A( (n-1) *k);magX=abs(X);subplot(3,1,2

10、);stem(magX);title(系统频率响应的幅度谱,);angX=angle(X);subplot(3,1,3);stem(angX);title(系统频率响应的相位谱,)%以下矩形脉冲序列xc(n)的时域和幅频特性(没有要求做,仅作参考)n=1:50;x=sign(sign(10-n)+1);close all;subplot(3,1,1);stem(x);title(矩形脉冲序列,);k=-24:25;X=x*(exp(-j*pi/25).A( (n-1) ,*k);magX=abs(X);subplot(3,1,2);stem(magX);title(矩形脉冲序列傅立叶变换的幅度

11、谱,);angX=angle(X);subplot(3,1,3);stem(angX);title(矩形脉冲序列傅立叶变换的相位谱,);四、2. (3)的参考程序:n=1:50;A=444.128;a=50*sqrt(2.0)*pi;T=0.001;w0=50*sqrt(2.0)*pi;x=A*exp(-a*(n-1)*T).*cos(w0*(n-1)*T);%close allfiguresubplot(3,1,1);stem(n-1,x);title(理想采样信号序列 x(n),);k=-24:25;%W=(pi/25)*k;X=x*(exp(-j*pi/25).A( (n-1) *k);

12、magX=abs(X);subplot(3,1,2);stem(n-1,magX);title(理想采样信号序列的幅度谱,);angX=angle(X);subplot(3,1,3);stem(n-1,angX);title(理想采样信号序列的相位谱,);%定义序列的长度是 50%设置信号有关的参数%采样率% 符号在MatLab中不能输入,用%pi是MatLab中定义的%绘制x (n)的图形%设置结果图形的标题%绘制x (n)的幅度谱%绘制x (n)的相位谱w代替四、3.的参考程序(xa(n)要用xb(n)代替):%卷积计算%在MatLab中提供了卷积函数conv,即y=conv (n, h)

13、,调用十分方便。%信号xa(n)和系统单位脉冲响应hb(n)的卷积n=1:50;hb=zeros(1,50);hb(1)=1;hb(2)=2.5;hb(3)=2.5;hb(4)=1;close all;subplot(3,1,1);stem(hb);title(系统单位脉冲响应hbn);m=1:50;T=0.001;A=444.128;a=50*sqrt(2.0)*pi;w0=50*sqrt(2.0)*pi;x=A*exp(-a*(m-1)*T).*cos(w0*(m-1)*T);subplot(3,1,2);stem(x);title(输入信号 xn);y=conv(x,hb);subplo

14、t(3,1,3);stem(y);title(输出信号 yn);四、5.的参考程序%参考程序clearhb=zeros(1,50);hb(1)=1;hb(2)=2.5;hb(3)=2.5;hb(4)=1;m=1:50;T=0.001;A=444.128;a=50*sqrt(2.0)*pi;w0=50*sqrt(2.0)*pi;x=A*exp(-a* (m-1)*T).*cos(w0* (m-1)*T);n=1:50;k=-24:25;X=x*(exp(-j*pi/25)A( (n-1) *k);magX=abs(X);%绘制信号x(n)傅立叶变换的幅度谱 subplot(3,2,1);stem

15、(magX);title(输入信号傅立叶变换的幅度谱,);angX=angle(X); %绘制 x(n)的相位谱subplot(3,2,2);stem(angX);title(输入信号傅立叶变换的相位谱,);Hb=hb*(exp(-j*pi/25).A( (n-1) *k);magHb=abs(Hb); %绘制 hb(n)的幅度谱 subplot(3,2,3);stem(magHb);title(系统单位频率响应的幅度谱,);angHb=angle(Hb); %绘制 hb(n)的相位谱subplot(3,2,4);stem(angHb);title(系统频率响应的相位谱,);n=1:99;k=

16、1:99;y=conv(x,hb);Y=y*(exp(-j*pi/25).A( (n-1) *k);magY=abs(Y); %绘制y(n)的幅度谱subplot(3,2,5);stem(magY);t田e(输出信号傅立叶变换的幅度谱,);angY=angle(Y); %绘制 y(n)的相位谱subplot(3,2,6);stem(angY);t田e(输出信号傅立叶变换的相位谱,);%将以下验证的结果显示figureXHB=X.*Hb;subplot(4,1,1);stem(abs(XHB);title(x(n)的幅度谱与hb(n)的幅度谱相乘);axis(0,50,0,8000)subplot(4,1,2);stem(abs(Y);title(y(n)傅立叶变换的幅度谱,);axis(0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论