版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第四节一、对面积的曲面积分的概念与性质 二、对面积的曲面积分的计算法对面积的曲面积分 一、对面积的曲面积分的概念与性质引例: 设曲面形构件具有连续面密度类似求平面薄板质量的思想, 采用可得求质 “大化小, 常代变, 近似和, 求极限” 的方法,量 M.其中, 表示 n 小块曲面的直径的最大值 (曲面的直径为其上任意两点间距离的最大者). 定义:设 为光滑曲面,“乘积和式极限” 都存在,的曲面积分其中 f (x, y, z) 叫做被积据此定义, 曲面形构件的质量为曲面面积为f (x, y, z) 是定义在 上的一 个有界函数,记作或第一类曲面积分.若对 做任意分割和局部区域任意取点, 则称此极限
2、为函数 f (x, y, z) 在曲面 上对面积函数, 叫做积分曲面.则对面积的曲面积分存在. 对积分域的可加性.则有 线性性质.在光滑曲面 上连续, 对面积的曲面积分与对弧长的曲线积分性质类似. 积分的存在性. 若 是分片光滑的,例如分成两片光滑曲面定理: 设有光滑曲面f (x, y, z) 在 上连续,存在, 且有二、对面积的曲面积分的计算法 则曲面积分说明:可有类似的公式.如果曲面方程为例1. 计算曲面积分其中是球面被平面截出的顶部.解:next思考:若 是球面被平行平面 z =h 截出的上下两部分,则例2. 计算其中 是由平面坐标面所围成的四面体的表面. 解: 设上的部分, 则与 原式 = 分别表示 在平面 例3. 设计算解: 锥面与上半球面交线为为上半球面夹于锥面间的部分, 它在 xoy 面上的投影域为则 内容小结1. 定义:2. 计算: 设则(曲面的其他两种情况类似)思考与练习P219 题3;4(1) ; 7 解答提示:P219 题3. 设则P246 题2P219 题4(1). 在 xoy 面上的投影域为这是 的面积 !P219 题7. 如图所示, 有P246 题2. 设一卦限中的部分, 则有( ).Ex1: 1. 已知曲面壳求此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论