2022年福建省厦门市中考数学押题卷含解析_第1页
2022年福建省厦门市中考数学押题卷含解析_第2页
2022年福建省厦门市中考数学押题卷含解析_第3页
2022年福建省厦门市中考数学押题卷含解析_第4页
2022年福建省厦门市中考数学押题卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若关于x的一元二次方程x22x+m=0有两个不相等的实数根,则m的取值范围是()Am1Bm1Cm1Dm12小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()ABCD3如图,直线ykx+b与x轴交于点(4,0),则y0时,x的取值范围是()A

2、x4Bx0Cx4Dx04如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是()ABCD52017年新设了雄安新区,周边经济受到刺激综合实力大幅跃升,其中某地区生产总值预计可增长到305.5亿元其中305.5亿用科学记数法表示为( )A305.5104 B3.055102 C3.0551010 D3.05510116将一把直尺与一块三角板如图所示放置,若则2的度数为( )A50B110C130D1507用圆心角为120,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A cmB3cmC4cmD4cm8如图,AB是O的直径,弦

3、CDAB,垂足为E,连接AC,若CAB=22.5,CD=8cm,则O的半径为()A8cmB4cmC4cmD5cm9已知,C是线段AB的黄金分割点,ACBC,若AB=2,则BC=()A3B(+1)C1D(1)10已知x+=3,则x2+=()A7B9C11D8二、填空题(共7小题,每小题3分,满分21分)11比较大小:_1(填“”或“”或“”)12如果某数的一个平方根是5,那么这个数是_13已知、为两个连续的整数,且,则=_14点A(a,3)与点B(4,b)关于原点对称,则a+b()A1B4C4D115为响应“书香成都”建设的号召,在全校形成良好的人文阅读风尚,成都市某中学随机调查了部分学生平均每

4、天的阅读时间,统计结果如图所示,则在本次调查中,阅读时间的中位数是_小时16王经理到襄阳出差带回襄阳特产孔明菜若干袋,分给朋友们品尝如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜_袋17若,则的值为 _ .三、解答题(共7小题,满分69分)18(10分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点(1)求直线AB的解析式;(2)根据图象写出当y1y2时,x的取值范围;(3)若点P在y轴上,求PA+PB的最小值19(5分)综合与实践旋转中的数学问题背景:在一次综合实践活动课上,同学们以两个矩形为对

5、象,研究相似矩形旋转中的问题:已知矩形ABCD矩形ABCD,它们各自对角线的交点重合于点O,连接AA,CC请你帮他们解决下列问题:观察发现:(1)如图1,若ABAB,则AA与CC的数量关系是_;操作探究:(2)将图1中的矩形ABCD保持不动,矩形ABCD绕点O逆时针旋转角度(090),如图2,在矩形ABCD旋转的过程中,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;操作计算:(3)如图3,在(2)的条件下,当矩形ABCD绕点O旋转至AAAD时,若AB=6,BC=8,AB=3,求AA的长20(8分)如图,一次函数ykxb的图象与反比例函数ymx(x0)的图象交于点P(n,2),与

6、x轴交于点A(4,0),与y轴交于点C,PBx轴于点B,点A与点B关于y轴对称(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由21(10分)已知:如图,AB为O的直径,AB=AC,BC交O于点D,DEAC于E(1)求证:DE为O的切线;(2)G是ED上一点,连接BE交圆于F,连接AF并延长交ED于G若GE=2,AF=3,求EF的长22(10分)阅读 (1)阅读理解:如图,在ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围解决此问题可以用如下

7、方法:延长AD到点E使DE=AD,再连接BE(或将ACD绕着点D逆时针旋转180得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三边的关系即可判断中线AD的取值范围是_; (2)问题解决:如图,在ABC中,D是BC边上的中点,DEDF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CFEF; (3)问题拓展:如图,在四边形ABCD中,B+D=180,CB=CD,BCD=140,以C为顶点作一个70角,角的两边分别交AB,AD于E,F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明23(12分)计算()2(3)0+|2|+2sin60;24(14分

8、)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】根据方程有两个不相等的实数根结合根的判别式即可得出=4-4m0,解之即可得出结论【详解】关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,

9、=(-2)2-4m=4-4m0,解得:m1故选B【点睛】本题考查了根的判别式,熟练掌握“当0时,方程有两个不相等的两个实数根”是解题的关键2、A【解析】密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),当他忘记了末位数字时,要一次能打开的概率是.故选A.3、A【解析】试题分析:充分利用图形,直接从图上得出x的取值范围由图可知,当y1时,x-4,故选C.考点:本题考查的是一次函数的图象点评:解答本题的关键是掌握在x轴下方的部分y1,在x轴上方的部分y14、D【解析】两个同心圆被均分成八等份,飞镖落在每一个区域的机会是均等的,由此计算出黑色区域的面

10、积,利用几何概率的计算方法解答即可【详解】因为两个同心圆等分成八等份,飞镖落在每一个区域的机会是均等的,其中黑色区域的面积占了其中的四等份,所以P(飞镖落在黑色区域)=.故答案选:D.【点睛】本题考查了几何概率,解题的关键是熟练的掌握几何概率的相关知识点.5、C【解析】解:305.5亿=3.0551故选C6、C【解析】如图,根据长方形的性质得出EFGH,推出FCD=2,代入FCD=1+A求出即可【详解】EFGH,FCD=2,FCD=1+A,1=40,A=90,2=FCD=130,故选C.【点睛】本题考查了平行线的性质,三角形外角的性质等,准确识图是解题的关键7、C【解析】利用扇形的弧长公式可得

11、扇形的弧长;让扇形的弧长除以2即为圆锥的底面半径,利用勾股定理可得圆锥形筒的高【详解】L4(cm);圆锥的底面半径为422(cm),这个圆锥形筒的高为(cm)故选C【点睛】此题考查了圆锥的计算,用到的知识点为:圆锥侧面展开图的弧长=;圆锥的底面周长等于侧面展开图的弧长;圆锥的底面半径,母线长,高组成以母线长为斜边的直角三角形8、C【解析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径【详解】解:连接OC,如图所示:AB是O的直径,弦CDAB, OA

12、=OC,A=OCA=22.5,COE为AOC的外角,COE=45,COE为等腰直角三角形, 故选:C【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键9、C【解析】根据黄金分割点的定义,知BC为较长线段;则BC= AB,代入数据即可得出BC的值【详解】解:由于C为线段AB=2的黄金分割点,且ACBC,BC为较长线段;则BC=2=-1故答案为:-1【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 倍,较长的线段=原线段的 倍10、A【解析】根据完全平方公式即可求出答案【详解】(x+)2=x2+2+9=2+x2+,x2+=7,故

13、选A【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.二、填空题(共7小题,每小题3分,满分21分)11、【解析】0.62,0.621,1;故答案为12、25【解析】利用平方根定义即可求出这个数.【详解】设这个数是x(x0),所以x(-5)225.【点睛】本题解题的关键是掌握平方根的定义.13、11【解析】根据无理数的性质,得出接近无理数的整数,即可得出a,b的值,即可得出答案【详解】ab,a、b为两个连续的整数,a5,b6,ab11.故答案为11.【点睛】本题考查的是估算无理数的大小,熟练掌握无理数是解题的关键.14、1【解析】据两个点关于原点对称时,它们的坐标符号相反可得a、

14、b的值,然后再计算a+b即可【详解】点A(a,3)与点B(4,b)关于原点对称,a=4,b=3,a+b=1,故选D【点睛】考查关于原点对称的点的坐标特征,横坐标、纵坐标都互为相反数.15、1【解析】由统计图可知共有:8+19+10+3=40人,中位数应为第20与第21个的平均数,而第20个数和第21个数都是1(小时),则中位数是1小时故答案为1.16、33.【解析】试题分析:设品尝孔明菜的朋友有x人,依题意得,5x36x3,解得x6,所以孔明菜有5x333袋.考点:一元一次方程的应用.17、-【解析】分析:已知第一个等式左边利用平方差公式化简,将ab的值代入即可求出a+b的值详解:a2b2=(

15、a+b)(ab)=,ab=,a+b= 故答案为点睛:本题考查了平方差公式,熟练掌握平方差公式是解答本题的关键三、解答题(共7小题,满分69分)18、(1)y=x+4;(2)1x1;(1)2【解析】(1)依据反比例函数y2= (x0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;(2)当1x1时,正比例函数图象在反比例函数图象的上方,即可得到当y1y2时,x的取值范围是1x1;(1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长【详解】(1)A(1,m

16、)、B(n,1)两点坐标分别代入反比例函数y2= (x0),可得m=1,n=1,A(1,1)、B(1,1),把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得,解得,直线AB的解析式为y=-x+4;(2)观察函数图象,发现:当1x1时,正比例函数图象在反比例函数图象的上方,当y1y2时,x的取值范围是1x1(1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,过C作y轴的平行线,过B作x轴的平行线,交于点D,则RtBCD中,BC=,PA+PB的最小值为2【点睛】本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐

17、标,得出不等式的取值范围是解答此题的关键19、(1)AA=CC;(2)成立,证明见解析;(3)AA=【解析】(1)连接AC、AC,根据题意得到点A、A、C、C在同一条直线上,根据矩形的性质得到OA=OC,OA=OC,得到答案;(2)连接AC、AC,证明AOACOC,根据全等三角形的性质证明;(3)连接AC,过C作CEAB,交AB的延长线于E,根据相似多边形的性质求出BC,根据勾股定理计算即可【详解】(1)AA=CC,理由如下:连接AC、AC,矩形ABCD矩形ABCD,CAB=CAB,ABAB,点A、A、C、C在同一条直线上,由矩形的性质可知,OA=OC,OA=OC,AA=CC,故答案为AA=C

18、C;(2)(1)中的结论还成立,AA=CC,理由如下:连接AC、AC,则AC、AC都经过点O,由旋转的性质可知,AOA=COC,四边形ABCD和四边形ABCD都是矩形,OA=OC,OA=OC,在AOA和COC中,AOACOC,AA=CC;(3)连接AC,过C作CEAB,交AB的延长线于E,矩形ABCD矩形ABCD,即,解得,BC=4,EBC=BCC=E=90,四边形BECC为矩形,EC=BC=4,在RtABC中,AC=10,在RtAEC中,AE=2,AA+BE=23,又AA=CC=BE,AA=【点睛】本题考查的是矩形的性质、旋转变换的性质、全等三角形的判定和性质,掌握旋转变换的性质、矩形的性质

19、是解题的关键20、(1)y24x1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.【解析】试题分析:(1)由点A与点B关于y轴对称,可得AOBO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AOBO,PBCO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y-8x 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BPC

20、D,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标试题解析:(1)点A与点B关于y轴对称,AOBO,A(4,0),B(4,0),P(4,2),把P(4,2)代入ymx得m8,反比例函数的解析式:y8x 把A(4,0),P(4,2)代入ykxb得:0=-4k+b2=4k+b,解得:k=14b=1,所以一次函数的解析式:y24x1. (2)点A与点B关于y轴对称,OA=OB PB丄x轴于点B,PBA=90,COA=90,PBCO,点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形点C为线段AP的中点,BC=12AP=PC,BC和PC是菱形的两条边由y14x1,

21、可得点C(0,1),过点C作CD平行于x轴,交PB于点E,交反比例函数y-8x的图象于点D,分别连结PD、BD,点D(8,1), BPCDPEBE1, CEDE4,PB与CD互相垂直平分, 四边形BCPD为菱形. 点D(8,1)即为所求.21、(1)见解析;(2)EAF的度数为30【解析】(1)连接OD,如图,先证明ODAC,再利用DEAC得到ODDE,然后根据切线的判定定理得到结论;(2)利用圆周角定理得到AFB=90,再证明RtGEFRtGAE,利用相似比得到 于是可求出GF=1,然后在RtAEG中利用正弦定义求出EAF的度数即可【详解】(1)证明:连接OD,如图,OB=OD,OBD=OD

22、B,AB=AC,ABC=C,ODB=C,ODAC,DEAC,ODDE,DE为O的切线;(2)解:AB为直径,AFB=90,EGF=AGF,RtGEFRtGAE,即整理得GF2+3GF4=0,解得GF=1或GF=4(舍去),在RtAEG中,sinEAG EAG=30,即EAF的度数为30【点睛】本题考查了切线的性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”也考查了圆周角定理22、(1)2AD8;(2)证明见解析;(3)BE+DF=EF;理由见解析.【解析】

23、试题分析:(1)延长AD至E,使DE=AD,由SAS证明ACDEBD,得出BE=AC=6,在ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得BMDCFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在BME中,由三角形的三边关系得出BE+BMEM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出NBC=D,由SAS证明NBCFDC,得出CN=CF,NCB=FCD,证出ECN=70=ECF,再由SAS证明NCEFCE,得出EN=EF,即可得出结论试题解析:(1)解:延长AD至E,使DE=

24、AD,连接BE,如图所示:AD是BC边上的中线,BD=CD,在BDE和CDA中,BD=CD,BDE=CDA,DE=AD,BDECDA(SAS),BE=AC=6,在ABE中,由三角形的三边关系得:ABBEAEAB+BE,106AE10+6,即4AE16,2AD8;故答案为2AD8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图所示:同(1)得:BMDCFD(SAS),BM=CF,DEDF,DM=DF,EM=EF,在BME中,由三角形的三边关系得:BE+BMEM,BE+CFEF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:ABC+D=180,NBC+ABC=180,NBC=D,在NBC和FDC中,BN=DF,NBC =D,BC=DC,NBCFDC(SAS),CN=CF,NCB=FCD,BCD=140,ECF=70,BCE+FCD=70,ECN=70=ECF,在NCE和FCE中,CN=CF,ECN=ECF,CE=CE,NCEFCE(SAS),EN=EF,BE+BN=EN,BE+DF=EF考点:全等三角形的判定和性质;三角形的三边关系定理.23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论