初一下册数学优质公开课获奖教案设计5篇_第1页
初一下册数学优质公开课获奖教案设计5篇_第2页
初一下册数学优质公开课获奖教案设计5篇_第3页
初一下册数学优质公开课获奖教案设计5篇_第4页
初一下册数学优质公开课获奖教案设计5篇_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初一下册数学优质公开课获奖教案设计5篇 初一下册数学教案1 第一章 一元一次不等式组 1.1 一元一次不等式组 第1教案 教学目标 1. 能结合实例,了解一元一次不等式组的相关概念。 2. 让学生在探索活动中体会化陌生为熟悉,化复杂为简单的“转化”思想方法。 3. 提高分析问题的能力,增强数学应用意识,体会数学应用价值。 教学重、难点 1.不等式组的解集的概念。 2.根据实际问题列不等式组。 教学方法 探索方法,合作交流。 教学过程 一、 引入课题: 1. 估计自己的体重不低于多少千克?不超过多少千克?若没体重为x千克,列出两个不等式。 2. 由许多问题受到多种条件的限制引入本章。 二、 探索

2、新知: 自主探索、解决第2页“动脑筋”中的问题,完成书中填空。 分别解出两个不等式。 把两个不等式解集在同一数轴上表示出来。 找出本题的答案。 三、 抽象: 教师举例说出什么是一元一次不等式组。什么是一元一次不等式组的解集。(渗透交集思想) 初一下册数学教案2 平行线的判定(1) 课型:新课: 备课人:韩贺敏 审核人:霍红超 学习目标 1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力. 2.掌握直线平行的条件,领悟归纳和转化的数学思想 学习重难点:探索并掌握直线平行的条件是本课的重点也是难点. 一、探索直线平行的条件 平行线的判定方法1: 二、练一练1、判断题 1

3、.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( ) 2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( ) 2、填空1.如图1,如果3=7,或_,那么_,理由是_;如果5=3,或笔_,那么_, 理由是_; 如果2+ 5= _ 或者_,那么ab,理由是_. (2) (3) 2.如图2,若2=6,则_,如果3+4+5+6=180, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD. 三、选择题 1.如图3所示,下列条件中,不能判定ABCD的是( ) A.ABEF,CDEF B.5=A; C.ABC+BCD=180 D.2=3 2.右图,由图和已知条件,下

4、列判断中正确的是( ) A.由1=6,得ABFG; B.由1+2=6+7,得CEEI C.由1+2+3+5=180,得CEFI; D.由5=4,得ABFG 四、已知直线a、b被直线c所截,且1+2=180,试判断直线a、b的位置关系,并说明理由. 五、作业课本15页-16页练习的1、2、3、 5.2.2平行线的判定(2) 课型:新课: 备课人:韩贺敏 审核人:霍红超 学习目标 1.经历观察、操作、想像、推理、交流等活动,进一步发展空 间观念,推理能力和有条理表达能力. 毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理. 学习重点:直线平行的条件的应用. 学习难点:选取适当判定直线平行

5、的方法进行说理是重点也是难点. 一、学习过程 平行线的判定方法有几种?分别是什么? 二.巩固练习: 1.如图2,若2=6,则_,如果3+4+5+6=180, 那么_,如果9=_,那么ADBC;如果9=_,那么ABCD. (第1题) (第2题) 2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角ABC=72,则另一个拐角BCD=_时,这个管道符合要求. 二、选择题. 1.如图,下列判断不正确的是( ) A.因为1=4,所以DEAB B.因为2=3,所以ABEC C.因为5=A,所以ABDE D.因为ADE+BED=180,所以ADBE 2.如图,直线AB、CD被直线EF所截,

6、使1=290,则( ) A.2=4 B.1=4 C.2=3 D.3=4 三、解答题. 1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法. 2.已知,如图2,点B在AC上,BDBE,1+C=90,问射线CF与BD平行吗?试用两种方法说明理由. 初一下册数学教案3 一、教学内容分析 1.2有理数1.2.2数轴。这一节是初中数学中非常重要的内容,从知识上讲,数轴是数学学习和研究的重要工具,它主要应用于绝对值概念的理解,有理数运算法则的推导,及不等式的求解。同时,也是学习直角坐标系的基础,从思想方法上讲,数轴是数形结合的起点,而数形结合是学生理解数学、学

7、好数学的重要思想方法。日常生活中带见的用温度计度量温度,已为学习数轴概念打下了一定的基础。通过问题情境类比得到数轴的概念,是这节课的主要学习方法。同时,数轴又能将数的分类直观的表现出来,是学生领悟分类思想的基础。 二、学生学习情况分析 (1)知识掌握上,七年级的学生刚刚学习有理数中的正负数,对正负数的概念理解不一定很深刻,许多学生容易造成知识遗忘,所以应全面系统的去讲述; (2)学生学习本节课的知识障碍。学生对数轴概念和数轴的三要素,学生不易理解,容易造成画图中掉三落四的现象,所以教学中教师应予以简单明白、深入浅出的分析; (3)由于七年级学生的理解能力和思维特征和生理特征,学生的好动性,注意

8、力容易分散,爱发表见解,希望得到老师的表扬等特点,所以在教学中应抓住学生这一生理心理特点,一方面要运用直观生动的形象,一发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生的主动性。 三、设计思想 从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则。小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识。直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学

9、生进行抽象的思维活动还是可行的。例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等。 四、教学目标 (一)知识与技能 1、掌握数轴的三要素,能正确画出数轴。 2、能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。 (二)过程与方法 1、使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识。 2、对学生渗透数形结合的思想方法。 (三)情感、态度与价值观 1、使学生初步了解数学来源于实践,反过来又服务于实践的辩证唯物主义观点。 2、通过画数轴,给学生以图形美的教育,同时由于数形的结合,学生会得到和谐美的享受。 五、教学重点及难点 1、重点:正确掌握数轴

10、画法和用数轴上的点表示有理数。 2、难点:有理数和数轴上的点的对应关系。 六、教学建议 1、重点、难点分析 本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小.难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。 2、知识结构 有了数轴,数和形得到了初步结合,这有利于对数学问题的研

11、究,数形结合是理解数学、学好数学的重要思想方法,本课知识要点如下: 定义规定了原点、正方向、单位长度的直线叫数轴 三要素原点正方向单位长度 应用数形结合 七、学法引导 1、教学方法:根据教师为主导,学生为主体的原则,始终贯穿“激发情趣手脑并用启发诱导反馈矫正”的教学方法。 2、学生学法:动手画数轴,动脑概括数轴的三要素,动手、动脑做练习。 八、课时安排 1课时 九、教具学具准备 电脑、投影仪、三角板 十、师生互动活动设计 讲授新课 (出示投影1) 问题1:三个温度计.其中一个温度计的液面在0上2个刻度,一个温度计的液面在0下5个刻度,一个温度计的液面在0刻度. 师:三个温度计所表示的温度是多少

12、? 生:2,-5,0. 问题2:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作) 师:我们能否用类似的图形表示有理数呢? 师:这种表示数的图形就是今天我们要学的内容数轴(板书课题). 师:与温度计类似,我们也可以在一条直线上画出刻度,标上读 数,用直线上的点表示正数、负数和零.具体方法如下 (边说边画): 1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0); 2.规定

13、直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负); 3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3, 师问:我们能不能用这条直线表示任何有理数?(可列举几个数) 让学生观察画好的直线,思考以下问题: (出示投影2) (1)原点表示什么数? (2)原点右方表示什么数?原点左方表示什么数? (3)表示+2的点在什么位置?表示-1的点在什么位置? (4)原点向右0.5个单位长度的A点表示什么数? 原点向左1.5个单位长度的B点表

14、示什么数? 根据老师画图的步骤,学生思考在一条水平的直线上都画出什么?然后归纳出数轴的定义. 师:在此基础上,给出数轴的定义,即规定了原点、正方向和单 位长度的直线叫做数轴. 进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢? 通过上述提问,向学生指出:数轴的三要素原点、正方向和单位长度,缺一不可. 教法说明通过“观察类比思考概括表达”展现知识的形成是从感性认识上升到理性认识的过程,让学生在获取知识的过程中,领会数学思想和思维方法,并有意识地训练学生归纳概括和口头表达能力. 师

15、生同步画数轴,学生概括数轴三要素,师出示投影,生动手动脑练习 尝试反馈,巩固练习 (出示投影3).画出数轴并表示下列有理数: 1、1.5,-2.2,-2.5,0. 2.写出数轴上点A,B,C,D,E所表示的数: 请大家回答下列问题: (出示投影4) (1)有人说一条直线是一条数轴,对不对?为什么? (2)下列所画数轴对不对?如果不对,指出错在哪里? 教法说明此组练习的目的是巩固数轴的概念. 十一、小结 本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这

16、个问题以后再研究. 十二、课后练习习题1.2第2题 十三、教学反思 1、数轴是数形转化、结合的重要媒介,情境设计的原型来源于生活实际,学生易于体验和接受,让学生通过观察、思考和自己动手操作、经历和体验数轴的形成过程,加深对数轴概念的理解,同时培养学生的抽象和概括能力,也体出了从感性认识,到理性认识,到抽象概括的认识规律。 2、教学过程突出了情竟到抽象到概括的主线,教学方法体了特殊到一般,数形结合的数学思想方法。 3、注意从学生的知识经验出发,充分发挥学生的主体意识,让学生主动参与学习活,并引导学生在课堂上感悟知识的生成,发展与变化,培养学生自主探索的学习方法。 初一下册数学教案4 一.教学目标

17、: 1.认知目标: 1)了解二元一次方程组的概念。 2)理解二元一次方程组的解的概念。 3)会用列表尝试的方法找二元一次方程组的解。 2.能力目标: 1)渗透把实际问题抽象成数学模型的思想。 2)通过尝试求解,培养学生的探索能力。 3.情感目标: 1)培养学生细致,认真的学习习惯。 2)在积极的教学评价中,促进师生的情感交流。 二.教学重难点 重点:二元一次方程的意义及二元一次方程的解的概念。 难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。 三.教学过程 (一)创设情景,引入课题 1.本班共有40人,请问能确定男女生各几人吗?为什

18、么? (1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40) (2)这是什么方程?根据什么? 2.男生比女生多了2人。设男生x人,女生y人.方程如何表示? x,y的值是多少? 3.本班男生比女生多2人且男女生共40人.设该班男生x人,女生y人。方程如何表示? 两个方程中的x表示什么?类似的两个方程中的y都表示? 像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。 4.点明课题:二元一次方程组。 (设计意图:从学生身边取数据,让他们感受到生活中处处有数学) (二)探究新知,练习巩固 1.二元一次方程组的概念 (1)请同学们看课本,了解二元一次方程组的的概

19、念,并找出关键词由教师板书。 让学生看书,引起他们对教材重视。找关键词,加深他们对概念的了解. (2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。 x2+y=0 y=2x+4 y+?x x=2/y+1 (x+y)/3-2=0 (设计意图:这一环节是本课设计的重点,为加深学生对“含有未知数的项的次数”的内涵的理解,我采取的是阅读书本中二元一次方程的概念,形成学生的认知冲突,激发学生对“项的次数的思考”,进而完善血生对二元一次方程概念的理解。) 2.二元一次方程组的解的概念 (1)由学生给出引例的答案,教师指出这就是此方程组的解。 (2)练习:把下列各组数的题序填入图中适当的位置

20、: 方程x+y=0的解,方程2x+3y=2的解,方程组的解。 (3)既满足第一个方程也满足第二个方程的解叫作二元一次方程组的解。 (4)练习:已知是方程组的解,求a,b的值。 (三)合作探索,尝试求解 现在我们一起来探索如何寻找方程组的解呢? 1.已知两个整数x,y,试找出方程组的解. 学生两人一小组合作探索。并让已经找出方程组解的学生利用实物投影,讲明自己的解题思路。 一般思路:由一个方程取适当的xy的值,代到另一个方程尝试. (设计意图:把课堂还给学生,让他们探索并解答问题,在获取新知识的同时也积累数学活动的经验) 2.据了解,某商店出售两种不同星号的“红双喜”牌乒乓球。其中“红双喜”二星

21、乒乓球每盒6只,三星乒乓球每盒3只。某同学一共买了4盒,刚好有15个球。 (1) 设该同学“红双喜”二星乒乓球买了x盒,三星乒乓球买了y盒,请根据问题中的条件列出关于x、y的方程组。(2)用列表尝试的方法解出这个方程组的解。 由学生独立完成,并分析讲解。 3.例 已知方程3X+2Y=10 当X=2时,求所对应的Y 的值; 取一个你自己喜欢的数作为X的值,求所对应的Y的值; 用含X的代数式表示Y; 用含Y 的代数式表示X; 当X=-2,0 时,所对应的Y值是多少; (设计意图:此处设计主要是想让学生形成求二元一次方程的解的一般方法,先让学生展示他们的思维过程,再从他们解一元一次方程的重复步骤中提

22、炼出用一个未知数的代数式表示另一个未知数,然后把它与原方程比较,把一个未知数的值代入哪一个方程计算会更简单,形成“正迁移”,引导学生体会“用关于一个未知数的代数式表示另一个未知数”的过程。) (四)课堂小结,布置作业 1.这节课学哪些知识和方法? 2.你还有什么问题或想法需要和大家交流? 3.教材P82 教学设计说明: 1.本课设计主线有两条。其一是知识线,内容从二元一次方程组的概念到二元一次方程组解的概念再到列表尝试法,环环相扣,层层递进;第二是能力培养线,学生从看书理解二元一次方程组的概念到学会归纳解的概念,再到自主探索,用列表尝试法解题,循序渐进,逐步提高。 2.“让学生成为课堂的真正主

23、体”是本课设计的主要理念。由学生给出数据,得出结果,再让他们在积极尝试后进行讲解,实现生生互评。把课堂的一切交给学生,相信他们能在已有的知识上进一步学习提高,教师只是点播和引导者。 3.本课在设计时对教材也进行了适当改动。例题方面考虑到数码时代,学生对胶卷已渐失兴趣,所以改为学生比较熟悉的乒乓球为体裁。另一方面,充分挖掘练习的作用,为知识的落实打下轧实的基础,为学生今后的进一步学习做好铺垫。 初一下册数学教案5 【知识讲解】 一、本讲主要学习内容 1、代数式的意义 2、列代数式的注意点 3、代数式值的意义 其中列代数式是重点,也是难点。 下面讲述一下这三点知识的主要内容。 1、代数式的意义 用

24、基本的运算符号(包括加、减、乘、除以及后面所要学的乘方、开方)将数及 表示数的字母连接而成的式子叫代数式。单个的数字或字母也叫代数式。如:5,a, 4x, ab, x+2y, , a2等 2.列代数式的注意点 在代数式中出现的乘号“”,通常写作“ ”或者省略不写。如3a可写作3 a或3a, 2(x+y)可以写作2(x+y)或2(x+y)。 数字与数字相乘时乘号,仍然用“”,不宜用“ ”,更不能省略不写。 数字写在字母的前面。 在代数式中出现除法运算时,一般按照分数的写法来写, 如st写作 。 代数式中带分数与字母相乘时,应写成假分数与字母相乘的形式,如 应写作 。 (6)两个代数式相乘,应该用

25、分数形式表示。 3.代数式值的意义 用数值代替代数式里的字母,按照代数式指明的运算,计算出的结果,就叫做代数式的值。 二、典型例题 例1 填空 棱长是acm 的正方体的体积是_cm3。 温度由tc下降2c后是_c。 产量由m千克增长10%,就达到_千克。 a和b 的倒数和是_。 a和b的和的倒数是_。 解: a3 (t-2) (1+10%)m 说明: 列代数式的关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,对一些容易混淆的说法,要仔细进行对比,对一些比较复杂的数量关系,可先分段考虑,要正确地使用括号。 像a3 ,(1+10%)m 这样的式子后在可直接写单位,像t-2这样的式子,

26、需写单位时,要将整个式子用括号括起来。 例2、用代数式表示 被4整除得 m的数 被2除商为 a余1的数 两数的平均数 a和b两数的平方差与这两数平方和的商 一项工程,甲独做需x天,乙独做需y天完成,甲乙两人合做完成的天数。 某人先用v1千米/时速度行完全路程的一半,又用v2千米/时的速度行完另一半, 若全路程长为a千米,用代数式表示此人行完全路程的平均速度。 个位数字是8,十位数字是 b 的两位数。 解: 4m 2a+1 设这两个数分别为a、b、则平均数为 。 10b+8 分析说明: 数a除以数b,除得的商正好是整数,而没有余数,我们称a能被b整除。 能被2整除的数叫偶数,不能被2整除的数叫奇

27、数。两个连续奇数,若较小的是n,则较大的是n +2 。 对于题中两数没有给出,为说明其一般性。可先设这两个数为a, b;用字母表示数时,在同一个问题中,不同的数要用不同的字母表示。 题中的a,b两数的平方是a2-b2,不能颠倒,也不能写成(a-b)2。 题中甲乙两人的工作效率分别是 和 ,所以甲乙两人合作完成的时间是 即 。 平均速度= 所以平均速度为 解答本题容易错写成 ,这主要是概念不清造成的。 题中主要应清楚自然数的十进制表示方法: n=an10n+an-110n-1+a110+a0 即一个自然数总可以用它各个数位上的数字来表示。 例3说出下列代数式的意义。 3a+2 3(a+2) (3) (4) a- (5)(a-b)2 (6)a2-b2 分析:说出代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点。 不含括号的代数式习惯从左到右按运算顺序读,如(1)小题3a+2读作“a的3倍与2的和”; 含括号的代数应该把括号里的代数式看作一个整体,按运算结果来读,如(2)小题3(a+2)读作“a与2的和的3倍”; 由于分数线具有除法和括号的双重作用,应该把分子与分母看成一个整体来读。 解:(1)a的3倍与2的和; (2)a与2的和的3倍; (3)a与b的差除以c的商; (4)a与b除以c的差; (5)a与b的差的平方; (6)a、b的平方差。 例4、当x=7,y=4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论