




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图,AB与O相切于点A,BO与O相交于点C,点D是优弧AC上一点,CDA27,则B的大小是( )A27B34C36D542若代数式的值为零,则实数x的值为()Ax0Bx0Cx3Dx33在实数,中,其中最小的实数是()ABCD4如图,已知矩形ABCD中,BC2AB,点E在BC边上,连接DE、AE,若EA平分BED,则的值为()ABCD5y=(m1)x|m|+3m表示一次函数,则m等于()A1B1C0或1D1或16a、b是实数,点A(2,a)、B(3,b)在反比例函数y=的图象上,
3、则()Aab0Bba0Ca0bDb0a7下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A1个 B2个 C3个 D4个8已知点,与点关于轴对称的点的坐标是( )ABCD9如图,在直角坐标系xOy中,若抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域(不包括直线y2和x轴),则l与直线y1交点的个数是()A0个B1个或2个C0个、1个或2个D只有1个102017年底我国高速公路已开通里程数达13.5万公里,居世界第一,将数据135000用科学计数法表示正确的是( )A1.35106B1.35105C13.5104D13510311如图所示,是用直尺和圆规
4、作一个角等于已知角的示意图,则说明AOBAOB的依据是()ASASBSSSCAASDASA12如图,四边形ABCD内接于O,点I是ABC的内心,AIC=124,点E在AD的延长线上,则CDE的度数为()A56B62C68D78二、填空题:(本大题共6个小题,每小题4分,共24分)13如图,将ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上(1)计算ABC的周长等于_(2)点P、点Q(不与ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC当AQPC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不
5、要求证明)_14计算:22()=_15方程的解是_16不等式组的解集是_17如图,AC是正五边形ABCDE的一条对角线,则ACB_18在一个不透明的袋子里装有除颜色外其它均相同的红、蓝小球各一个,每次从袋中摸出一个小球记下颜色后再放回,摸球三次,“仅有一次摸到红球”的概率是_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)如图,在四边形ABCD中,ADBC,B=90,BC=6,AD=3,AB=,点E,F同时从B点出发,沿射线BC向右匀速移动,已知点F的移动速度是点E移动速度的2倍,以EF为一边在CB的上方作等边EFG,设E点移动距离为x(0 x6)(
6、1)DCB= 度,当点G在四边形ABCD的边上时,x= ;(2)在点E,F的移动过程中,点G始终在BD或BD的延长线上运动,求点G在线段BD的中点时x的值;(3)当2x6时,求EFG与四边形ABCD重叠部分面积y与x之间的函数关系式,当x取何值时,y有最大值?并求出y的最大值20(6分)如图,在中,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径(1)求证:是的切线;(2)当,时,求的半径21(6分)如图中的小方格都是边长为1的正方形,ABC的顶点和O点都在正方形的顶点上以点O为位似中心,在方格图中将ABC放大为原来的2倍,得到ABC;ABC绕点B顺时针旋转90,画出旋转后得到的
7、ABC,并求边AB在旋转过程中扫过的图形面积22(8分)如图,直线yx+4与x轴交于点A,与y轴交于点B抛物线yx2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b ,c ,点C的坐标为 如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为mPQ与OQ的比值为y,求y与m的数学关系式,并求出PQ与OQ的比值的最大值如图2,若点P是第四象限的抛物线上的一点连接PB与AP,当PBA+CBO45时求PBA的面积23(8分)如图,已知ABC,按如下步骤作图:分别以A、C为圆心,以大于12AC的长为半径在AC两边作弧,交于两点M、N;连接MN,分别交AB、AC于点D
8、、O;过C作CEAB交MN于点E,连接AE、CD(1)求证:四边形ADCE是菱形;(2)当ACB=90,BC=6,ADC的周长为18时,求四边形ADCE的面积24(10分)石狮泰禾某童装专卖店在销售中发现,一款童装每件进价为80元,销售价为120元时,每天可售出20件,为了迎接“十一”国庆节,商店决定采取适当的降价措施,以扩大销售量,增加利润,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件设每件童装降价x元时,每天可销售_ 件,每件盈利_ 元;(用x的代数式表示)每件童装降价多少元时,平均每天赢利1200元要想平均每天赢利2000元,可能吗?请说明理由25(10分)如图,在RtAB
9、C中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD已知CAD=B求证:AD是O的切线若BC=8,tanB=,求O 的半径26(12分)如图,直线y2x6与反比例函数y(k0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线yn(0n6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线yn沿y轴方向平移,当n为何值时,BMN的面积最大?27(12分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数
10、的表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、C【解析】由切线的性质可知OAB=90,由圆周角定理可知BOA=54,根据直角三角形两锐角互余可知B=36【详解】解:AB与O相切于点A,OABAOAB=90CDA=27,BOA=54B=90-54=36故选C考点:切线的性质2、A【解析】根据分子为零,且分母不为零解答即可.【详解】解:代数式的值为零,x0,此时分母x-30,符合题意.故选A【点睛】本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:分子的值为0,分母的值不为0,这两个条件缺一不可.3、B【
11、解析】由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解【详解】解:0,-2,1,中,-201,其中最小的实数为-2;故选:B【点睛】本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小4、C【解析】过点A作AFDE于F,根据角平分线上的点到角的两边距离相等可得AF=AB,利用全等三角形的判定和性质以及矩形的性质解答即可【详解】解:如图,过点A作AFDE于F,在矩形ABCD中,ABCD,AE平分BED,AFAB,BC2AB,BC2AF,ADF30,在AFD与DCE中C=AFD=90,ADF=
12、DEC,AF=DC,,AFDDCE(AAS),CDE的面积AFD的面积矩形ABCD的面积ABBC2AB2,2ABE的面积矩形ABCD的面积2CDE的面积(2)AB2,ABE的面积,,故选:C【点睛】本题考查了矩形的性质,角平分线上的点到角的两边距离相等的性质,以及全等三角形的判定与性质,关键是根据角平分线上的点到角的两边距离相等可得AF=AB5、B【解析】由一次函数的定义知,|m|=1且m-10,所以m=-1,故选B.6、A【解析】解:,反比例函数的图象位于第二、四象限,在每个象限内,y随x的增大而增大,点A(2,a)、B(3,b)在反比例函数的图象上,ab0,故选A7、C【解析】根据轴对称图
13、形与中心对称图形的概念判断即可【详解】第一个图形不是轴对称图形,是中心对称图形;第二、三、四个图形是轴对称图形,也是中心对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、C【解析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案【详解】解:点,与点关于轴对称的点的坐标是,故选:C【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关
14、于原点对称的点,横坐标与纵坐标都互为相反数9、C【解析】根据题意,利用分类讨论的数学思想可以得到l与直线y1交点的个数,从而可以解答本题【详解】抛物线l:yx2+bx+c(b,c为常数)的顶点D位于直线y2与x轴之间的区域,开口向下,当顶点D位于直线y1下方时,则l与直线y1交点个数为0,当顶点D位于直线y1上时,则l与直线y1交点个数为1,当顶点D位于直线y1上方时,则l与直线y1交点个数为2,故选C【点睛】考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用函数的思想和分类讨论的数学思想解答10、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确
15、定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:135000=1.35105故选B【点睛】此题考查科学记数法表示较大的数科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值11、B【解析】由作法易得OD=OD,OC=OC,CD=CD,根据SSS可得到三角形全等【详解】由作法易得ODOD,OCOC,CDCD,依据SSS可判定CODCOD,故选:B【点睛】本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理12、C【解析】分析:由点I是
16、ABC的内心知BAC=2IAC、ACB=2ICA,从而求得B=180(BAC+ACB)=1802(180AIC),再利用圆内接四边形的外角等于内对角可得答案详解:点I是ABC的内心,BAC=2IAC、ACB=2ICA,AIC=124,B=180(BAC+ACB)=1802(IAC+ICA)=1802(180AIC)=68,又四边形ABCD内接于O,CDE=B=68,故选C点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质二、填空题:(本大题共6个小题,每小题4分,共24分)13、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交
17、于点N,连接MN与AB交于P 【解析】(1)利用勾股定理求出AB,从而得到ABC的周长;(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.【详解】解:(1)AC=3,BC=4,C=90,根据勾股定理得AB=5,ABC的周长=5+4+3=12.(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,
18、连接MN与AB交于P.【点睛】本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.14、1【解析】解:原式=1故答案为115、1【解析】,x=1,代入最简公分母,x=1是方程的解.16、x1【解析】分析:分别求出两个不等式的解,从而得出不等式组的解集详解:解不等式可得:x1, 解不等式可得:x3, 不等式组的解为x1点睛:本题主要考查的是不等式组的解集,属于基础题型理解不等式的性质是解决这个问题的关键17、36【解析】由正五边形的性质得出B=108,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果【详解】五边形ABCDE是正五边形,B=108,AB=CB,ACB=
19、(180108)2=36;故答案为3618、【解析】摸三次有可能有:红红红、红红蓝、红蓝红、红蓝蓝、蓝红红、蓝红蓝、蓝蓝红、蓝蓝蓝共计8种可能,其中仅有一个红坏的有:红蓝蓝、蓝红蓝、蓝蓝红共计3种,所以“仅有一次摸到红球”的概率是.故答案是:.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1) 30;2;(2)x=1;(3)当x=时,y最大=;【解析】(1)如图1中,作DHBC于H,则四边形ABHD是矩形AD=BH=3,BC=6,CH=BCBH=3,当等边三角形EGF的高= 时,点G在AD上,此时x=2;(2)根据勾股定理求出的长度,根据三角函数,求
20、出ADB=30,根据中点的定义得出根据等边三角形的性质得到,即可求出x的值;(3)图2,图3三种情形解决问题当2x3时,如图2中,点E、F在线段BC上,EFG与四边形ABCD重叠部分为四边形EFNM;当3x6时,如图3中,点E在线段BC上,点F在射线BC上,重叠部分是ECP;【详解】(1)作DHBC于H,则四边形ABHD是矩形AD=BH=3,BC=6,CH=BCBH=3,在RtDHC中,CH=3, 当等边三角形EGF的高等于时,点G在AD上,此时x=2,DCB=30,故答案为30,2,(2)如图ADBCA=180ABC=18090=90在RtABD中, ADB=30G是BD的中点 ADBCAD
21、B=DBC=30GEF是等边三角形,GFE=60BGF=90在RtBGF中, 2x=2即x=1;(3)分两种情况:当2x3,如图2点E、点F在线段BC上GEF与四边形ABCD重叠部分为四边形EFNMFNC=GFEDCB=6030=30FNC=DCBFN=FC=62xGN=x(62x)=3x6FNC=GNM=30,G=60GMN=90在RtGNM中, 当时,最大 当3x6时,如图3,点E在线段BC上,点F在线段BC的延长线上,GEF与四边形ABCD重叠部分为ECPPCE=30,PEC=60EPC=90在RtEPC中EC=6x, 对称轴为 当x6时,y随x的增大而减小当x=3时,最大综上所述:当时
22、,最大【点睛】属于四边形的综合题,考查动点问题,等边三角形的性质,三角函数,二次函数的最值等,综合性比较强,难度较大.20、(1)见解析;(2)的半径是.【解析】(1)连结,易证,由于是边上的高线,从而可知,所以是的切线(2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.【详解】解:(1)连结平分,又,是边上的高线,是的切线.(2),是中点,又,在中,而,的半径是.【点睛】本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力21、(1)作图见解析;(2)作图见解析;5(平方单位)【解析】(1)连接A
23、O、BO、CO并延长到2AO、2BO、2CO长度找到各点的对应点,顺次连接即可(2)ABC的A、C绕点B顺时针旋转90得到对应点,顺次连接即可AB在旋转过程中扫过的图形面积是一个扇形,根据扇形的面积公式计算即可【详解】解:(1)见图中ABC(2)见图中ABC扇形的面积(平方单位)【点睛】本题主要考查了位似图形及旋转变换作图的方法及扇形的面积公式22、(3)3, 2,C(2,4);(2)ym2+m ,PQ与OQ的比值的最大值为;(3)SPBA3【解析】(3)通过一次函数解析式确定A、B两点坐标,直接利用待定系数法求解即可得到b,c的值,令y=4便可得C点坐标(2)分别过P、Q两点向x轴作垂线,通
24、过PQ与OQ的比值为y以及平行线分线段成比例,找到,设点P坐标为(m,-m2+m+2),Q点坐标(n,-n+2),表示出ED、OD等长度即可得y与m、n之间的关系,再次利用即可求解(3)求得P点坐标,利用图形割补法求解即可【详解】(3)直线yx+2与x轴交于点A,与y轴交于点BA(2,4),B(4,2)又抛物线过B(4,2)c2把A(2,4)代入yx2+bx+2得,422+2b+2,解得,b3抛物线解析式为,yx2+x+2令x2+x+24,解得,x2或x2C(2,4)(2)如图3,分别过P、Q作PE、QD垂直于x轴交x轴于点E、D设P(m,m2+m+2),Q(n,n+2),则PEm2+m+2,
25、QDn+2又yn又,即把n代入上式得,整理得,2ym2+2mym2+mymax即PQ与OQ的比值的最大值为(3)如图2,OBAOBP+PBA25PBA+CBO25OBPCBO此时PB过点(2,4)设直线PB解析式为,ykx+2把点(2,4)代入上式得,42k+2解得,k2直线PB解析式为,y2x+2令2x+2x2+x+2整理得, x23x4解得,x4(舍去)或x5当x5时,2x+225+27P(5,7)过P作PHcy轴于点H则S四边形OHPA(OA+PH)OH(2+5)724SOABOAOB227SBHPPHBH5335SPBAS四边形OHPA+SOABSBHP24+7353【点睛】本题考查了
26、函数图象与坐标轴交点坐标的确定,以及利用待定系数法求解抛物线解析式常数的方法,再者考查了利用数形结合的思想将图形线段长度的比化为坐标轴上点之间的线段长度比的思维能力还考查了运用图形割补法求解坐标系内图形的面积的方法23、(1)详见解析;(2)1【解析】(1)利用直线DE是线段AC的垂直平分线,得出ACDE,即AOD=COE=90,从而得出AODCOE,即可得出四边形ADCE是菱形.(2)利用当ACB=90时,ODBC,即有ADOABC,即可由相似三角形的性质和勾股定理得出OD和AO的长,即根据菱形的性质得出四边形ADCE的面积.【详解】(1)证明:由题意可知:分别以A、C为圆心,以大于12AC
27、的长为半径在AC两边作弧,交于两点M、N;直线DE是线段AC的垂直平分线,ACDE,即AOD=COE=90;且AD=CD、AO=CO,又CEAB,1=2,在AOD和COE中1=2AOD=COE=90AO=CO, AODCOE(AAS),OD=OE,A0=CO,DO=EO,四边形ADCE是平行四边形,又ACDE,四边形ADCE是菱形;(2)解:当ACB=90时,ODBC,即有ADOABC,ODBC=AOAC=12, 又BC=6,OD=3,又ADC的周长为18,AD+AO=9, 即AD=9AO,OD=AD2-AO2=3, 可得AO=4,DE=6,AC=8,S=12ACDE=1286=24 【点睛】考查线段垂直平分线的性质,菱形的判定,相似三角形的判定与性质等,综合性比较强.24、(1)(20+2x),(40 x);(2)每件童装降价20元或10元,平均每天赢利1200元;(3)不可能做到平均每天盈利2000元【解析】(1)、根据销售量=原销售量+因价格下降而增加的数量;每件利润=原售价进价降价,列式即可;(2)、根据总利润=单件利润数量,列出方程即可;(3)、根据(2)中的相关关系方程,判断方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论