山大数字电子技术基础课件第1章数制和码制_第1页
山大数字电子技术基础课件第1章数制和码制_第2页
山大数字电子技术基础课件第1章数制和码制_第3页
山大数字电子技术基础课件第1章数制和码制_第4页
山大数字电子技术基础课件第1章数制和码制_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、数字电子技术基础(第五版)CAI 教 学 软 件下 页退 出数字电子技术基础(第五版)CAI 教学软件第一章 数制和码制第二章 逻辑代数基础第三章 门电路第四章 组合逻辑电路第五章 触发器目 录第七章 半导体存储器第八章 可编程逻辑器件第九章 硬件描述语言第十章 脉冲波形的产生和整形第十一章 数 - 模和模 - 数转换第六章 时序逻辑电路上 页下 页返 回第一章 数制和码制第二节 二进制算术运算第三节 几种常用的编码第一节 几种常用的数制上 页下 页返 回4第一节 几种常用的数制 概述 几种常用的数制 不同数制间的转换下页总目录推出5下页返回一、概述数 字 量:它们的变化在时间上和数量上都是离

2、散的。它们数值的大小和每次变化的增减变化都是某一个最小数量单位的整数倍,而小于这个最小数量单位的数值没有任何物理意义。数字信号:表示数字量的信号。数字电路:工作在数字信号下的电子电路。例如:统计通过某一个桥梁的汽车数量,得到的就是一个数字量,最小数量单位的“1”代表“一辆”汽车,小于1的数值已经没有任何物理意义。上页6下页返回模 拟 量:它们的变化在时间上和数值上都是连续的。模拟信号:表示模拟量的信号。模拟电路:工作在模拟信号下的电子电路。例如:热电偶工作时输出的电压或电流信号就是一种模拟信号,因为被测的温度不可能发生突跳,所以测得的电压或电流无论在时间上还是在数量上都是连续的。这个信号在连续

3、变化过程中的任何一个取值都有具体的物理意义,即表示一个相应的温度。上页7下页返回随着计算机科学与技术突飞猛进地发展,用数字电路进行信号处理的优势更加突出。数字信号通常都是以数码形式给出的。不同的数码可以用来表示数量的不同大小。数制:把多位数码中每一位的构成方法以及从低位到高位的进位规则称为数制。在数字电路中经常使用的计数进制有十进制、二进制和十六进制。有时也用到八进制。算术运算:当两个数码分别表示两个数量大小时,它们可以进行数量间的加、减、乘、除等运算。这种运算称为算术运算。上页8下页返回不同的数码不仅可以用来表示数量的不同大小,而且可以用来表示不同的事物或事物的不同状态。在用于表示不同事物的

4、情况下,这些数码已经不再具有表示数量大小的含义了,它们只是不同事物的代号而已。这些数码称为代码。例如:一位运动员编一个号码。为了便于记忆和查找,在编制代码时总要遵循一定的规则,这些规则就称为码制。上页9下页返回上页二、几种常用的数制十进制是日常生活中最常使用的进位计数制。在十进制数中,每一位有09十个数码,所以计数的基数是10。超过9的数必须用多位数表示,其中低位和相邻高位之间的进位关系是“逢十进一”。 任意十进制数 D 的展开式:ki是第 i 位的系数,可以是09中的任何一个。例1.1.1:将十进制数12.56展开为:1. 十进制10下页返回上页任意 N 进制数展开式的普遍形式:其中 ki

5、是第 i 位的系数;ki 可以是 0 N-1 中的任何一个;N 称为计数的基数;Ni 称为第 i 位的权。11下页返回上页2. 二进制目前在数字电路中应用最广泛的是二进制。在二进制数中,每一位仅有0和1两个可能的数码,计数基数为2。低位和相邻高位间的进位关系是“逢二进一”。 任意二进制数 D 的展开式:ki 可以是 0 和 1 中的任何一个。例1.1.2:将二进制数101.11展开并转换为十进制数。12下页返回上页3. 八进制在某些场合有时也使用八进制。八进制数的每一位有07八个不同的数码,计数基数为8。低位和相邻的高位之间的进位关系是“逢八进一”。 任意八进制数 D 的展开式:ki 可以是

6、0 7 中的任何一个。例1.1.3:将八进制数12.4展开并转换为为十进制数。13下页返回上页4. 十六进制十六进制的每一位有十六个不同的数码,分别用09、A、B、C、D、E、F表示。任意十六进制数 D 均可展开为:ki可以是0 9、A、B、C、D、E、F 中之一。例1.1.4:十六进制数1B.2E的展开式及十进制数为:14下页返回上页将二进制数转换为等值的十进制数称为二-十转换。转换时只要将二进制数按二进制数展开式展开,然后各项数值按十进制数相加,就可得到等值的十进制数。1. 二-十转换例1.1.5:将二进制数101.11转换为十进制数。三、不同数制间的转换15下页返回上页整数部分:除 2

7、法。672余数 = 1 = k0332余数 = 1 = k1162余数 = 0 = k2 82余数 = 0 = k3 42余数 = 0 = k4 22余数 = 0 = k5 1 2余数 = 1 = k60所以2.十-二转换例1.1.6:将十进制数65转换为二进制数。16下页返回上页小数部分:乘 2 法 0.625 2 1.250整数部分=1= k-1 0.250 2 0.500整数部分=0= k-2 0.500 2 1.000整数部分=1= k-3所以例1.1.7:将十进制数0.625转换为二进制数。17下页返回上页从低位到高位将整数部分每 4 位二进制数分为一组并代之以等值的十六进制数,同时

8、从高位到低位将小数部分的每4位数分为一组并代之以等值的十六进制数,即可得到对应的十六进制数。 ( 5 1 B . B 2 )163. 二-十六转换例1.1.8:将二进制数010100011011.10110010转换为十六进制数。18下页返回上页十六-二转换是指将十六进制数转换为等值的二进制数。将十六进制的每一位用等值的4位二进制数代替即可。( 8 F C. 6 A )164. 十六-二转换例1.1.9:将十六进制数8FC.6A转换为二进制数.19下页返回上页将二进制数转换为八进制数时,只要将二进制数的整数部分从低位到高位每3位分为一组并代之以等值的八进制数,同时将小数部分从高位到低位每3位分

9、为一组并代之以等值的八进制数就可以了。5. 八进制数与二进制数的转换( 2 6 . 5 2 )8例1.1.10:将二进制数010110.101010转换为八进制数。20下页返回上页将八进制数转换为二进制数时,只要将八进制数的 每一位代之以等值的二进制数即可。5. 八进制数与二进制数的转换( 5 2. 4 3 )8例1.1.11:将八进制数(52.43)8转换为二进制数。21返回 根据式 将各位按权展开后相加。十-十六转换先转换成二进制数,再转换成等值的十六进制数。6. 十六进制数与十进制数的转换十六-十转换下页上页22返回上页课堂练习23第二节 二进制算术运算 二进制算术运算的特点 反码、补码

10、和补码运算下页总目录推出24下页返回一、二进制算术运算的特点上页当两个二进制数码表示两个数量大小时,它们之间可以进行数值运算,这种运算称为算术运算。二进制算术运算和十进制算术运算的规则基本相同,唯一的区别在于二进制数是“逢二进一”而不是十进制数的“逢十进一”。例如:两个二进制数1001和0101的算术运算有: 10011110+ 0101 10010100- 0101加法运算减法运算25下页返回上页乘法运算除法运算 10011001 01010000100100000101101 100101010101100001010110010100101.11二进制算术运算的两个特点:二进制的乘法运算

11、可以通过若干次的“被乘数(或0)左移1位”和“被乘数(或0)与部分积相加这两种操作完成”;二进制数的除法运算能通过若干次的“除数右移1位”和从被除数或余数中减去除数这两种操作完成。26下页返回上页二、反码、补码和补码运算二进制数的正、负表示方法通常采用的是在二进制数的前面增加一位符号位。符号位为0表示这个数是正数,符号位为1表示这个数是负数。这种形式的数称为原码。在做减法运算时,如果两个数是用原码表示的,则首先需要比较两数绝对值的大小,然后以绝对值大的一个作为被减数、绝对值小的一个作为减数,求出差值,并以绝对值大的一个数的符号作为差值的符号。这个操作过程比较麻烦,而且需要使用数值比较电路和减法

12、运算电路。27下页返回上页如果用两数的补码相加代替上述减法运算,则计算过程中就无需使用数值比较电路和减法运算电路了,从而使减法运算器的电路结构大为简化。10-5的减法运算可以用10+7的加法运算代替。因为5和7相加正好等于产生进位的模数12,所以称7为-5对模12 的补数,也称为补码(complement)。28下页返回上页在舍弃进位的条件下,减去某个数可以用加上它的补码来代替。这个结论同样适用于二进制数的运算。1011-0111=0100的减法运算,在舍弃进位的条件下,可以用1011+1001=0100的加法运算代替。1001是0111对模16的补码。29下页返回上页对于有效数字(不包括符号

13、位)为n位的二进制数N,它的补码(N)COMP表示方法为(当N为正数)(当N为负数)为避免在求补码的过程中做减法运算,通常是先求出N的反码,然后在负数的反码上加1而得到补码。(当N为正数)(当N为负数)正数的补码与原码相同,负数的补码等于2n-N 。30下页返回上页例1.2.1:写出带符号位二进制数00011010(+26)、10011010(-26)、00101101(+45)和10101101(-45)的反码和补码。 原码 反码 补码00011010 00011010 0001101010011010 11100101 1110011000101101 00101101 001011011

14、0101101 11010010 1101001131返回上页例1.2.2:用二进制补码运算求出13+10、13-10、-13+10、-13-10。+13+10+230 011010 010100 10111+13-10 +30 011011 101100 00011(1) -13+10 -31 100110 010101 11101-13-10-231 100111 101101 01001(1)在两个同符号数相加时,它们的绝对值之和不可超过有效数字位所能表示的最大值,否则会得出错误的计算结果。32第三节 几种常用的编码 十进制代码 格雷码 美国信息交换标准代码下页总目录推出33下页返回一、

15、十进制代码为了用二进制代码表示十进制数的09这十个状态,二进制代码至少应当有4位。4位二进制代码一共有十六个(00001111),取其中哪十个以及如何与09相对应,有许多种方案。以下给出常见的几种十进制代码,它们的编码规则各不相同。上页34下页返回上页8421码BCD代码余3码2421码5211码余3循环码01234567890000000100100011010001010110011110001001001101000101011001111000100110101011110000000001001000110100101111001101111011110000000101000101

16、0111100010011100110111110010011001110101010011001101111111101010权842124215211编码种类十进制数35下页返回上页8421码又称为BCD(Binary Coded Decimal)码,是十进制代码中最常用的一种。每一位的1代表的十进制数称为这一位的权。8421码中每一位的权是固定不变的,它属于恒权代码。余3码的编码规则与8421码不同。如果将两个余3码相加,所得的和将比十进制数和所对应的二进制数多6。0和9、1和8、2和7、3和6、4和5的余3码互为反码,这对于求取对10的补码是很方便的。余3码不是恒权代码。36下页返回上

17、页2421码是一种恒权代码, 它的0和9、1和8、2和7、3和6、4和5也互为反码。5211码是另一种恒权代码。5211码的每一位正好与8421码十进制计数器4个触发器输出脉冲的分频比相对应。这种对应关系在构成某些数字系统时很有用。余3循环码是一种变权码,每一位的1在不同代码中并不代表固定的数值。它的主要特点是相邻的两个代码之间仅有一位的状态不同。37下页返回上页二、格雷码编码顺序二进制代码格雷码0123456789101112131415000000010010001101000101011001111000100110101011110011011110111100000001001100

18、10011001110101010011001101111111101010101110011000格雷码每一位的状态变化都按照一定的顺序循环。格雷码的最大优点在于当它按照左表的编码顺序依次变化时,相邻两个代码之间只有一位发生变化。这样在代码转换的过程中就不会产生过渡“噪声”。38下页返回上页三、美国信息交换标准代码(ASCII)美国信息交换标准代码(American Standard Code for Information Interchange,简称ASCII码)是由美国国家标准化协会(ANSI)制定的一种信息代码,广泛地用于计算机和通信领域中。 ASCII码已经由国际标准化组织(ISO)认定为国际通用的标准代码。 ASCII码是一组7位二进制代码(b7 b6 b5 b4 b3b2 b1),共128个,其中包括表示09的十个代码,表示大、小写英文字母的52个代码,32个表示各种符号的代码以及34个控制码。39返回上页b4 b3b2 b1b7 b6b5 000 001 010 011 100

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论