版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、关于随机变量的分布和数字特征第一张,PPT共一百零三页,创作于2022年6月为什么要引入随机变量的概念1.很多随机试验,其结果可以直接用数值表示。例如:产品抽检中出现的次品数,测量物体长度产生的误差等。2.有些试验其结果看起来与数值没有直接的关系,但是我们可以人为的赋予他们“关系”。例如:抛硬币的试验第二张,PPT共一百零三页,创作于2022年6月这个试验有2个可能的结果:正面,反面。为了讨论的方便,引入变量X,当正面出现时,取X=1,当反面出现时,取X=0,这样,X随试验结果的不同而取不同的值,即X可以看成是定义在样本空间上的函数第三张,PPT共一百零三页,创作于2022年6月一、随机变量(
2、random variable)的概念 2.1 随机变量 1、含义:用来表示随机现象结果的变量。 样本点本身是用数量表示的; 样本点本身不是用数量表示的。 总之,不管随机试验的结果是否具有数量的性质,都可以建立一个样本空间和实数空间的对应关系,使之与数值建立联系,用随机变量的取值来表示事件。 2、定义:定义在样本空间上的实值函数XX()称为随机变量,常用大写英文字母或小写希腊字母来表示,相应地,用小写英文字母表示其取值。HT第四张,PPT共一百零三页,创作于2022年6月随机变量的特点: (1)X的全部可能取值是互斥且完备的。(2)X的部分可能取值描述随机事件。 注:随机变量是样本点的函数,其
3、函数值是实数,但自变量(样本点)不一定是实数。 与微积分中的变量不同,还存在其取值的概率的问题。(分布)第五张,PPT共一百零三页,创作于2022年6月二、随机变量的实例解:样本点如图所示共有10个不同的样本点例1 引入适当的随机变量描述下列事件:将3个球随机地放入三个格子中,事件A=有1个空格,B=有2个空格,C=全有球。第六张,PPT共一百零三页,创作于2022年6月记X表示“空格个数”,则有第七张,PPT共一百零三页,创作于2022年6月三、关于随机变量的补充说明 随机变量随着试验结果的不同而取不同的值,在试验之前,只能知道它可能取值的范围,但不能预先知道它取哪个(些)值; 随机试验的各
4、个结果的出现有一定的概率,因此随机变量取某个(些)值也有一定的概率。第八张,PPT共一百零三页,创作于2022年6月随机变量的分类:其他(混合型)连续型随机变量离散型随机变量随机变量第九张,PPT共一百零三页,创作于2022年6月2.2 离散型随机变量的概率分布一、离散型随机变量及概率分布XP第十张,PPT共一百零三页,创作于2022年6月例1 掷两颗骰子,观察其点数,记X为点数之和,Y为6点的个数,Z为最大点数,求X、Y、Z的概率分布。含有36个样本点.分析:样本空间是什么?随机变量的取值范围是什么?第十一张,PPT共一百零三页,创作于2022年6月XPYPZP第十二张,PPT共一百零三页,
5、创作于2022年6月求分布律的一般步骤确定样本空间。确定随机变量的可能取值。确定随机变量的每个取值所对应的事件。求出每个事件的概率。列出表格或写出一般的概率表达式。求分布律中的概率时,关键在于必须把随机变量的取值对应到样本空间中的具体事件。第十三张,PPT共一百零三页,创作于2022年6月分布律的基本性质 非负性: 正则性: 这两条性质也是随机变量分布律的充要条件。第十四张,PPT共一百零三页,创作于2022年6月二、常用离散分布1、01分布 X 0 1 P 1-p p 随机变量只有两个取值的分布称为两点分布;特别地,若其取值为0和1,称之为01分布。例2 一批产品的废品率为5%,从中任意取一
6、个进行检验,用随机变量X描述废品出现的情况,即X的分布。第十五张,PPT共一百零三页,创作于2022年6月用X=1表示产品为废品,X=0表示产品为合格品,则 X 0 1 P 95% 5%2、二项分布(Binominal distribution) 定义:在 n 重Bernoulli试验中, 若以X记事件发生的次数,则X为一随机变量,且其可能取值为X=0,1,2,,n.其对应的概率由二项概率给出: 第十六张,PPT共一百零三页,创作于2022年6月例3 某工厂每天用水量保持正常的概率为3/4,求最近6天内用水量正常的天数的分布。 X 0 1 2 3 4 5 6 P0.0002 0.0044 0.
7、0330 0.1318 0.2966 0.3560 0.1780第十七张,PPT共一百零三页,创作于2022年6月3、泊松分布第十八张,PPT共一百零三页,创作于2022年6月补充说明单位时间内电话总机接到用户的呼唤次数、电路受到的电磁波的冲击次数;一平方米内玻璃上的气泡数;一铸件上的沙眼数等随机变量都服从泊松分布。二项分布和泊松分布都是非常重要常用的离散分布.在n重的贝努利试验中,某个事件在n次试验中发生的次数服从的是二项分布.其特点是只知次数,不知位置.二项分布在某个取值处概率达到最大.第十九张,PPT共一百零三页,创作于2022年6月二项分布与泊松分布的关系:泊松定理 二项概率可以用泊松
8、分布的概率来近似 ,n越大,近似程度越高,该定理解决了二项概率的近似计算问题。第二十张,PPT共一百零三页,创作于2022年6月例4 已知某种疾病的发病率为0.001,某单位共有5000人,问该单位患有这种疾病的人数不超过5人的概率是多少?解:设患病人数为X,则X服从二项分布B(5000,0.001).n=5000, p=0.001.概率可利用泊松分布近似计算。直接查表可得,见P294,5,k=05.第二十一张,PPT共一百零三页,创作于2022年6月4、几何分布(Geometric distribution)特殊性质无记忆性定义:在Bernoulli试验中,记 p 为事件A在一次试验中出现的
9、概率,X为首次出现A时的试验次数,则X的可能取值为1,2,称X的分布为几何分布,记为XGe(p). 其分布律为第二十二张,PPT共一百零三页,创作于2022年6月5、超几何分布 设N个元素分为两类,有N1个属于第一类,N2属于第二类(N1+N2=N) ,从中任取n个,令X表示取到的第一(二)类元素的个数,则X的分布称为超几何分布。 当N很大,n相对于N较小时,超几何分布可用二项分布来近似计算,不放回抽样可近似看成有放回抽样,这一结论在实际工作中往往可使问题变得简单。第二十三张,PPT共一百零三页,创作于2022年6月 为了方便地表示随机事件的概率及其运算,我们引入了分布函数的概念。一、分布函数
10、(distribution function)的定义2.3 随机变量的分布函数第二十四张,PPT共一百零三页,创作于2022年6月 注:(1)分布函数表示的是随机事件的概率。(2)分布函数与微积分中的函数没有区别。第二十五张,PPT共一百零三页,创作于2022年6月二、分布函数的性质 注:以上三条是分布函数的基本性质,也是分布函数的充要条件。 第二十六张,PPT共一百零三页,创作于2022年6月三、举例例1一袋中装有依次标着数字-1,2,2,2,3,3的6个球,从袋中随机取出一个球。记X为取出的球上的数字,求X的分布函数。解:X的可能取值有-1,2,3.且有第二十七张,PPT共一百零三页,创作
11、于2022年6月该分布函数的图形如下:注:分布函数是概率的累加。第二十八张,PPT共一百零三页,创作于2022年6月四、离散型随机变量的分布函数由分布律可以写出其分布函数 10它的图形是有限(或无穷)级数的阶梯函数右连续 在X的取正概率的点xk处有跳跃,跃度为概率pk.第二十九张,PPT共一百零三页,创作于2022年6月解:X的可能取值为1,2,3.且例2一个袋中有5个球,编号为1,2,3,4,5.从中任取3个,以X表示取出球的最小号码,求X的分布律与分布函数。注:计算概率时,必须明确相应的具体事件是什么。第三十张,PPT共一百零三页,创作于2022年6月X的分布律为 X 1 2 3 P0.6
12、 0.3 0.1X的分布函数为思考:如何由分布函数求分布律?第三十一张,PPT共一百零三页,创作于2022年6月分析:由分布律与分布函数的关系,考虑X的可能取值有哪些?第三十二张,PPT共一百零三页,创作于2022年6月2.4 连续型随机变量的概率分布定义:设X是随机变量,F(x) 是它的分布函数,若存在一个非负可积函数f(x),使得对任意的xR ,有则称X为连续型随机变量,F(x)为X的分布密度函数。注:分布函数表示在 x 处的累积概率,把其导数称为概率密度是非常合理的。一、连续型随机变量的定义及性质称f(x) 为X的概率密度函数第三十三张,PPT共一百零三页,创作于2022年6月概率密度的
13、性质(充要条件):非负性:正则性:概率密度在概率计算中的应用:注:(2)式中的区间可以是开(闭或半开)区间。第三十四张,PPT共一百零三页,创作于2022年6月几个重要结论(4)对于连续型r.v.,不必“点点计较”,而对离散型r.v.,则要“点点计较”。第三十五张,PPT共一百零三页,创作于2022年6月密度函数与分布函数的关系:1由分布函数求密度函数比较简单,下面考虑如何由密度函数来求分布函数.第三十六张,PPT共一百零三页,创作于2022年6月例1.设随机变量X密度函数为 求常数c 和分布函数.第三十七张,PPT共一百零三页,创作于2022年6月密度函数和分布函数的图形如下:1-11-11
14、第三十八张,PPT共一百零三页,创作于2022年6月求:1.c的值;2.P(-1X1);3.X的分布函数.解:1.利用正则性例2设随机变量X的密度函数为第三十九张,PPT共一百零三页,创作于2022年6月注意随机变量的可能取值,不能机械地套公式,简单地在积分上、下限上取.二、常用连续分布1、均匀分布(Uniform distribution)第四十张,PPT共一百零三页,创作于2022年6月均匀分布的密度函数和分布函数的图形:ab1ab均匀分布的概率计算:第四十一张,PPT共一百零三页,创作于2022年6月例3设X服从(0,10)上的均匀分布,现对X进行4次独立观察,求至少3次观测值大于5的概
15、率。分析:除了X之外,本题还有一个随机变量观测值大于5的次数,记为Y.二项分布,第四十二张,PPT共一百零三页,创作于2022年6月 某公共汽车站从早晨7:00起,每隔15min来一趟车,一乘客在7:00到7:30之间随机到达,求(1)该乘客等候不到5min乘上车的概率;(2)该乘客等候时间超过10min才乘上车的概率。注:均匀分布与几何概型关系“密切”。练习第四十三张,PPT共一百零三页,创作于2022年6月2、指数分布(Exponontial distribution)密度函数的图形为:其分布函数为:注:与几何分布类似,指数分布也具有无记忆性。第四十四张,PPT共一百零三页,创作于2022
16、年6月例4设打一次电话所需要的时间(单位:分钟)服从参数为0.2的指数分布。如果刚好有人在你前面走进电话亭,并立即开始打电话,求你将等待:1、超过5分钟的概率;2、5分钟至10分钟的概率.指数分布在实际中有着重要的应用。如一些“东西”的寿命服从指数分布、随机服务系统中的服务时间也服从指数分布等。第四十五张,PPT共一百零三页,创作于2022年6月3、正态分布(Normal /Gaussian distribution)密度函数图形如下密度函数关于x=对称.分布函数为:第四十六张,PPT共一百零三页,创作于2022年6月标准正态分布其密度函数为:0.51第四十七张,PPT共一百零三页,创作于20
17、22年6月正态分布概率的计算:第四十八张,PPT共一百零三页,创作于2022年6月第四十九张,PPT共一百零三页,创作于2022年6月正态分布的标准化 问题:对于非标准的正态分布,如何通过查表求相关概率?通过等价事件转化为服从标准正态分布的随机变量。第五十张,PPT共一百零三页,创作于2022年6月第五十一张,PPT共一百零三页,创作于2022年6月例7某地区抽样调查结果表明,考生的外语成绩X,且96分以上的考生占总人数的2.3。求考生成绩在60分至84分之间的概率。第五十二张,PPT共一百零三页,创作于2022年6月 定义 设f(x)是定义在随机变量X的一切可能值x集合上的函数,对X的每一可
18、能取值x,有唯一的y=f(x)与之对应,Y是y的集合,则Y是一个随机变量,称Y为X的函数,记作Y=f(X).问题:若X的分布已知,如何求Y的分布?2.5 随机变量函数的分布第五十三张,PPT共一百零三页,创作于2022年6月设随机变量X的分布律为一、离散型随机变量函数的分布第五十四张,PPT共一百零三页,创作于2022年6月例1 已知X的分布律如下:解:第五十五张,PPT共一百零三页,创作于2022年6月整理,得第五十六张,PPT共一百零三页,创作于2022年6月二、连续型随机变量函数的分布1、公式法注意该定理的适用条件。g(x)严格单调第五十七张,PPT共一百零三页,创作于2022年6月定理
19、的证明:第五十八张,PPT共一百零三页,创作于2022年6月第五十九张,PPT共一百零三页,创作于2022年6月第六十张,PPT共一百零三页,创作于2022年6月补充说明:第六十一张,PPT共一百零三页,创作于2022年6月2、分布函数法g(x)为任意形式(1)先确定Y的可能取值范围,(2)在Y的可能取值范围内,求出其分布函数。(3)在Y的可能取值范围内,求其密度函数。(4)在实数区间内,表示出Y的密度函数。万能法第六十二张,PPT共一百零三页,创作于2022年6月例4 设X服从区间(0,1)上的均匀分布,求Y=X2的密函数.第六十三张,PPT共一百零三页,创作于2022年6月练习:设X的密度
20、函数是fX(x),Y=4X-1,求Y的密度函数.第六十四张,PPT共一百零三页,创作于2022年6月2.6 随机变量的数字特征一、为什么要引入随机变量的数字特征1.实际中,有些随机变量的分布不易求。二、几个常用的特征指标数学期望、方差、标准差、协方差、相关系数、矩2.有些实际问题往往对随机变量的分布不感兴趣,只对随机变量的几个特征指标感兴趣。第六十五张,PPT共一百零三页,创作于2022年6月一、数学期望例1分赌本问题甲、乙两个赌徒赌技相同,各出赌注50元,每局无平局,且约定:先赢三局者得到全部赌本100元。当甲赢了两局,乙赢了一局时,因故要中止赌博,问这100元的赌本应如何分配才合理?乙胜甲
21、输甲胜乙输乙胜甲输甲胜乙输甲胜的概率为:.分析:假设赌博继续下去,其可能结果如下:1、数学期望的引入第六十六张,PPT共一百零三页,创作于2022年6月设甲得到的赌本为X,则X的分布律为 甲胜的概率为:.说明:该问题涉及随机变量的分布,且含有均值的意义.甲应该获得赌本的3/4.第六十七张,PPT共一百零三页,创作于2022年6月算术平均与加权平均问题:如果已知离散型随机变量X的分布律如何求X的平均值?第六十八张,PPT共一百零三页,创作于2022年6月加权平均数的计算:随机变量的平均值:概率替换频率第六十九张,PPT共一百零三页,创作于2022年6月2、数学期望的定义 为随机变量X的数学期望.
22、第七十张,PPT共一百零三页,创作于2022年6月补充说明:加权平均数:离散型随机变量期望:连续型随机变量期望:频率概率概率注:期望是均值的推广或更一般的形式.第七十一张,PPT共一百零三页,创作于2022年6月例2 一批产品中有一、二、三等品、次品及废品5种,相应的概率分别为0.7,0.1,0.1, 0.06,0.04,若其价格分别为6元,5.4元,5元,4元及0元。求产品的平均价格。XP第七十二张,PPT共一百零三页,创作于2022年6月第七十三张,PPT共一百零三页,创作于2022年6月第七十四张,PPT共一百零三页,创作于2022年6月3、数学期望的运算性质4、一维随机变量的函数的数学
23、期望 线性性质第七十五张,PPT共一百零三页,创作于2022年6月第七十六张,PPT共一百零三页,创作于2022年6月例4 设随机变量X的分布为解:第七十七张,PPT共一百零三页,创作于2022年6月练习:设随机变量X的分布律为XP第七十八张,PPT共一百零三页,创作于2022年6月第七十九张,PPT共一百零三页,创作于2022年6月第八十张,PPT共一百零三页,创作于2022年6月数学期望在解决实际问题中有着非常重要的应用,见下面的例子.第八十一张,PPT共一百零三页,创作于2022年6月例6 购买福利彩票,为简化假定只有一种奖,即百万大奖,中奖率为百万分之一.每张彩票2元,张某买了一张彩票
24、,问他可以获益多少元?第八十二张,PPT共一百零三页,创作于2022年6月练习:保险公司设立汽车盗窃险,参保者交保险费a元,若汽车被盗,公司赔偿b元,问b应如何定值才能使公司期望获益?(经统计,一年内汽车的失窃率为p)第八十三张,PPT共一百零三页,创作于2022年6月保险公司按以上策略经营,很可能破产!原因有二:(1)投保者是相对不安全地区的车主.信息不对称(2)投保者会放松对车的看管.道德风险它们使投保者中车辆的失窃率p大大提高.第八十四张,PPT共一百零三页,创作于2022年6月例7 某公司生产的机器无故障工作时间X有密度函数公司每售出一台机器可获利1600元,若机器在售出1.2万小时之
25、内出现故障,则予以更换,这时每台亏损1200元;若在1.2到2万小时之内出现故障,则予以维修,由公司负担维修费400元;若在使用2万小时以上出现故障,则用户自己负责。求该公司售出每台机器的平均获利。第八十五张,PPT共一百零三页,创作于2022年6月解决方法:求随机变量函数的数学期望.关键:第八十六张,PPT共一百零三页,创作于2022年6月则用户自己负责。公司每售出一台机器可获利1600元,若机器在售出1.2万小时之内出现故障,则予以更换,每台亏损1200元;若在1.2到2万小时之内出现故障,则予以维修,由公司负担维修费400元;若在使用2万小时以上出现故障,第八十七张,PPT共一百零三页,创作于2022年6月第八十八张,PPT共一百零三页,创作于2022年6月二、方差与标准差引例1 比较甲、乙两班学生成绩的差异百分比若把两班成绩看作随机变量的取值,其分布有什么区别?随机变量取值的分散程度不同,乙班成绩分布较集中。第八十九张,PPT共一百零三页,创作于2022年6月引例2 比较两种型号手表的质量哪种手表质量
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智能家居产品买卖协议
- 手表代理合同
- 畜牧养殖合作协议模版
- 砖混砌筑工程协议范例
- 股票配资软件授权合同
- 现场处置方案应急救援预案演练方案
- 环保设备租赁服务合同
- 试桩工程施工合同书
- 工业设备租赁合同参考
- 创新费买卖合同
- 危险作业人员参加工伤保险制度参考模板范本
- 单项式乘以单项式-完整版PPT
- 初中语文人教九年级上册环境描写的作用
- 三年级数学下册课件-4.2 两位数乘两位数1-人教版(共11张PPT)
- 道路改造排水工程交通组织及管线保护方案
- 马鞍山博望区新城区控制性详细规划的知识
- 汽车数据安全管理合规清单
- 编制说明-《人防指挥工程维护管理规范》
- 消防安全安全隐患排查整改台帐
- 医务科年度工作汇报与计划精编ppt
- 学术论文的选题课件
评论
0/150
提交评论