2022届山东省部分地区中考数学对点突破模拟试卷含解析_第1页
2022届山东省部分地区中考数学对点突破模拟试卷含解析_第2页
2022届山东省部分地区中考数学对点突破模拟试卷含解析_第3页
2022届山东省部分地区中考数学对点突破模拟试卷含解析_第4页
2022届山东省部分地区中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是()A主视图是中心对称图形B左视图是中心对称图形C主视图既是中心对称图形又是轴对称图形D俯视图既是中心对称图形又是轴对称图形2把a的根号外的a移到根号内得()AB

2、CD3广西2017年参加高考的学生约有365000人,将365000这个数用科学记数法表示为( )A3.65103B3.65104C3.65105D3.651064估计1的值为()A1和2之间B2和3之间C3和4之间D4和5之间5下列各数:,sin30, ,其中无理数的个数是()A1个B2个C3个D4个6如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )A3个;B4个;C5个;D6个7如图,一次函数y1xb与一次函数y2kx4的图象交于点P(1,3),则关于x的不等式xbkx4的解集是()Ax2Bx0Cx1Dx1

3、8的算术平方根是( )A9B9C3D39化简:-,结果正确的是()A1BCD10已知一组数据,的平均数是2,方差是,那么另一组数据,的平均数和方差分别是ABCD二、填空题(共7小题,每小题3分,满分21分)11若-2amb4与5a2bn+7是同类项,则m+n= 12已知:如图,在AOB中,AOB=90,AO=3 cm,BO=4 cm将AOB绕顶点O,按顺时针方向旋转到A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=_cm13如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF

4、的长为_14从一副54张的扑克牌中随机抽取一张,它是K的概率为_15如图1,在R tABC中,ACB=90,点P以每秒2cm的速度从点A出发,沿折线ACCB运动,到点B停止过点P作PDAB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示当点P运动5秒时,PD的长的值为_16如图,四边形ABCD中,E,F,G,H分别是边AB、BC、CD、DA的中点若四边形EFGH为菱形,则对角线AC、BD应满足条件_17如图,直线与双曲线(k0)相交于A(1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_.三、解答题(共7小题,满分69分)18(10分)如图1,直

5、角梯形OABC中,BCOA,OA=6,BC=2,BAO=45 (1)OC的长为; (2)D是OA上一点,以BD为直径作M,M交AB于点Q当M与y轴相切时,sinBOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线BCO向点O运动当点P到达点A时,两点同时停止运动过点P作直线PEOC,与折线OBA交于点E设点P运动的时间为t(秒)求当以B、D、E为顶点的三角形是直角三角形时点E的坐标19(5分)在“双十一”购物街中,某儿童品牌玩具专卖店购进了两种玩具,其中类玩具的金价比玩具的进价每个多元.经调查发现:用元购进类玩具的数量与用元

6、购进类玩具的数量相同.求的进价分别是每个多少元?该玩具店共购进了两类玩具共个,若玩具店将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得的利润不少于元,则该淘宝专卖店至少购进类玩具多少个?20(8分)如图,在ABC中,C=90,BC4,AC1点P是斜边AB上一点,过点P作PMAB交边AC或BC于点M又过点P作AC的平行线,与过点M的PM的垂线交于点N设边APx,PMN与ABC重合部分图形的周长为y(1)AB (2)当点N在边BC上时,x (1)求y与x之间的函数关系式(4)在点N位于BC上方的条件下,直接写出过点N与ABC一个顶点的直线平分ABC面积时x的值21(10分)已知:

7、如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF22(10分)如图,在正方形ABCD中,E为对角线AC上一点,CE=CD,连接EB、ED,延长BE交AD于点F求证:DF2=EFBF23(12分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A、B,A公司有铵肥3吨,每吨售价750元;B公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输重量a(单位:吨)的关系如图所示(1)根据图象求出b关于a的函数解析式(包括自变量的取值范围); (2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m千米,设

8、农场从A公司购买x吨铵肥,购买8吨铵肥的总费用为y元(总费用=购买铵肥费用+运输费用),求出y关于x的函数解析式(m为常数),并向农场建议总费用最低的购买方案24(14分) “大美湿地,水韵盐城”某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:请根据图中提供的信息,解答下列问题:(1)求被调查的学生总人数;(2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;(3)若该校共有800名学生,请估计“最想去景点B“的学生人数参考答案一、选择题(每小题只有一

9、个正确答案,每小题3分,满分30分)1、D【解析】先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可【详解】解:A、主视图不是中心对称图形,故A错误;B、左视图不是中心对称图形,故B错误;C、主视图不是中心对称图形,是轴对称图形,故C错误;D、俯视图既是中心对称图形又是轴对称图形,故D正确故选:D【点睛】本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键2、C【解析】根据二次根式有意义的条件可得a0,原式变形为(a),然后利用二次根式的性质得到,再把根号内化简即可【详解】解:0,a0,原式(a),故选C【点睛】本题考查的是二次根式的化简,主要是判断

10、根号有意义的条件,然后确定值的范围再进行化简,是常考题型3、C【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数【详解】解:将365000这个数用科学记数法表示为3.651故选C【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值4、C【解析】分析:根据被开方数越大算术平方根越大,可得答案详解:,15,311 故选C点睛:本题考查了估算无理数的大小

11、,利用被开方数越大算术平方根越大得出15是解题的关键,又利用了不等式的性质5、B【解析】根据无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数,找出无理数的个数即可【详解】sin30=,=3,故无理数有,-,故选:B【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:开方开不尽的数,无限不循环小数,含有的数6、B【解析】分析:直接利用轴对称图形的性质进而分析得出答案详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个 故选B 点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键7、C【解析】试

12、题分析:当x1时,x+bkx+4,即不等式x+bkx+4的解集为x1故选C考点:一次函数与一元一次不等式8、D【解析】根据算术平方根的定义求解.【详解】=9,又(1)2=9,9的平方根是1,9的算术平方根是1即的算术平方根是1故选:D【点睛】考核知识点:算术平方根.理解定义是关键.9、B【解析】先将分母进行通分,化为(x+y)(x-y)的形式,分子乘上相应的分式,进行化简.【详解】【点睛】本题考查的是分式的混合运算,解题的关键就是熟练掌握运算规则.10、D【解析】根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可【详解】解:数据x1,x2,x3,x4,x5的平均数是2,数据3

13、x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是32-2=4;数据x1,x2,x3,x4,x5的方差为,数据3x1,3x2,3x3,3x4,3x5的方差是32=3,数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D【点睛】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】试题分析:根据同类项是字母相同且相同字母的指数也相同,可得

14、方程组,根据解方程组,可得m、n的值,根据有理数的加法,可得答案试题解析:由-2amb4与5a2bn+7是同类项,得m=2n+7=4,解得m=2n=-3m+n=-1考点:同类项12、1.1【解析】试题解析:在AOB中,AOB=90,AO=3cm,BO=4cm,AB=1cm,点D为AB的中点,OD=AB=2.1cm将AOB绕顶点O,按顺时针方向旋转到A1OB1处,OB1=OB=4cm,B1D=OB1OD=1.1cm故答案为1.113、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,依据RtCFGRtCFH,可得CH=C

15、G=,再根据勾股定理即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合14、 【解析】

16、根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】一副扑克牌共有54张,其中只有4张K,从一副扑克牌中随机抽出一张牌,得到K的概率是=,故答案为:【点睛】此题考查了概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=15、2.4cm【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sinB的值,可求出PD详解:由图2可得,AC=3,BC=4,AB=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,sinB=,PD=BPsinB=2=

17、1.2(cm)故答案是:1.2 cm点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般16、AC=BD【解析】试题分析:添加的条件应为:AC=BD,把AC=BD作为已知条件,根据三角形的中位线定理可得,HG平行且等于AC的一半,EF平行且等于AC的一半,根据等量代换和平行于同一条直线的两直线平行,得到HG和EF平行且相等,所以EFGH为平行四边形,又EH等于BD的一半且AC=BD,所以得到所证四边形的邻边EH与HG相等,所以四边形EFGH为菱形试题解析:添加的条件应为:AC=BD证明:E,F,G,H分别是边AB、BC、C

18、D、DA的中点,在ADC中,HG为ADC的中位线,所以HGAC且HG=AC;同理EFAC且EF=AC,同理可得EH=BD,则HGEF且HG=EF,四边形EFGH为平行四边形,又AC=BD,所以EF=EH,四边形EFGH为菱形考点:1菱形的性质;2三角形中位线定理17、(0,)【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(1,3),把点A坐标代入双曲线的解析式得3=k,即k=3,联立两函数解析式得:,解得:,即点B坐标为:(3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、

19、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,)考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题三、解答题(共7小题,满分69分)18、(4)4;(2);(4)点E的坐标为(4,2)、(,)、(4,2)【解析】分析:(4)过点B作BHOA于H,如图4(4),易证四边形OCBH是矩形,从而有OC=BH,只需在AHB中运用三角函数求出BH即可 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2),则有OH=2,BH=4,MNOC设圆的半径为r,则MN=MB=MD=r在RtBHD中运用勾股定理可求出r=2,从而

20、得到点D与点H重合易证AFGADB,从而可求出AF、GF、OF、OG、OB、AB、BG设OR=x,利用BR2=OB2OR2=BG2RG2可求出x,进而可求出BR在RtORB中运用三角函数就可解决问题 (4)由于BDE的直角不确定,故需分情况讨论,可分三种情况(BDE=90,BED=90,DBE=90)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题详解:(4)过点B作BHOA于H,如图4(4),则有BHA=90=COA,OCBH BCOA,四边形OCBH是矩形,OC=BH,BC=OH OA=6,BC=2,AH=0AOH=OABC=62=4 BHA=90,BAO=45,

21、tanBAH=4,BH=HA=4,OC=BH=4 故答案为4 (2)过点B作BHOA于H,过点G作GFOA于F,过点B作BROG于R,连接MN、DG,如图4(2) 由(4)得:OH=2,BH=4 OC与M相切于N,MNOC 设圆的半径为r,则MN=MB=MD=r BCOC,OAOC,BCMNOA BM=DM,CN=ON,MN=(BC+OD),OD=2r2,DH= 在RtBHD中,BHD=90,BD2=BH2+DH2,(2r)2=42+(2r4)2 解得:r=2,DH=0,即点D与点H重合,BD0A,BD=AD BD是M的直径,BGD=90,即DGAB,BG=AG GFOA,BDOA,GFBD,

22、AFGADB,=,AF=AD=2,GF=BD=2,OF=4,OG=2 同理可得:OB=2,AB=4,BG=AB=2 设OR=x,则RG=2x BROG,BRO=BRG=90,BR2=OB2OR2=BG2RG2,(2)2x2=(2)2(2x)2 解得:x=,BR2=OB2OR2=(2)2()2=,BR= 在RtORB中,sinBOR= 故答案为 (4)当BDE=90时,点D在直线PE上,如图2 此时DP=OC=4,BD+OP=BD+CD=BC=2,BD=t,OP=t 则有2t=2 解得:t=4则OP=CD=DB=4 DEOC,BDEBCO,=,DE=2,EP=2,点E的坐标为(4,2) 当BED

23、=90时,如图4 DBE=OBC,DEB=BCO=90,DBEOBC,=,BE=t PEOC,OEP=BOC OPE=BCO=90,OPEBCO,=,OE=t OE+BE=OB=2t+t=2 解得:t=,OP=,OE=,PE=,点E的坐标为() 当DBE=90时,如图4 此时PE=PA=6t,OD=OC+BCt=6t 则有OD=PE,EA=(6t)=6t,BE=BAEA=4(6t)=t2 PEOD,OD=PE,DOP=90,四边形ODEP是矩形,DE=OP=t,DEOP,BED=BAO=45 在RtDBE中,cosBED=,DE=BE,t=t2)=2t4 解得:t=4,OP=4,PE=64=2

24、,点E的坐标为(4,2) 综上所述:当以B、D、E为顶点的三角形是直角三角形时点E的坐标为(4,2)、()、(4,2) 点睛:本题考查了圆周角定理、切线的性质、相似三角形的判定与性质、三角函数的定义、平行线分线段成比例、矩形的判定与性质、勾股定理等知识,还考查了分类讨论的数学思想,有一定的综合性19、(1)的进价是元,的进价是元;(2)至少购进类玩具个.【解析】(1)设的进价为元,则的进价为元,根据用元购进类玩具的数量与用元购进类玩具的数量相同这个等量关系列出方程即可;(2)设玩具个,则玩具个,结合“玩具点将每个类玩具定价为元出售,每个类玩具定价元出售,且全部售出后所获得利润不少于元”列出不等

25、式并解答.【详解】解:(1)设的进价为元,则的进价为元由题意得,解得,经检验是原方程的解.所以(元)答:的进价是元,的进价是元;(2)设玩具个,则玩具个由题意得:解得.答:至少购进类玩具个.【点睛】本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系,准确的解分式方程或不等式是需要掌握的基本计算能力.20、(1)2;(2);(1)详见解析;(4)满足条件的x的值为【解析】(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是A

26、B中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2(2)如图1中,四边形PAMN是平行四边形, 当点在上时,(1)当时,如图1, 当时,如图2, y当时,如图1,(4)如图4中,当点是中点时,满足条件 .如图2中,当点是中点时,满足条件 .综上所述,满足条件的x的值为或【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.21、见解析【解析】根据条件可以得出AD=AB,ABF=ADE=90,从而可以得出ABFADE,就可以得出FAB=EAD,就可以得出结论【详解】证

27、明:四边形ABCD是正方形,AB=AD,ABC=D=BAD=90,ABF=90在BAF和DAE中, ,BAFDAE(SAS),FAB=EAD,EAD+BAE=90,FAB+BAE=90,FAE=90,EAAF22、见解析【解析】证明FDEFBD即可解决问题.【详解】解:四边形ABCD是正方形,BC=CD,且BCE=DCE,又CE是公共边,BECDEC,BEC=DECCE=CD,DEC=EDCBEC=DEC,BEC=AEF,EDC=AEFAEF+FED=EDC+ECD,FED=ECD四边形ABCD是正方形,ECD=BCD=45,ADB=ADC=45,ECD=ADBFED=ADB又BFD是公共角,FDEFBD,=,即DF2=EFBF【点睛】本题考查了相似三角形的判定与性质,和正方形的性质,正确理解正方形的性质是关键23、(1)b;(2)详见解析.【解析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A、B公司购买铵肥的费用,再求出农场从A、B公司购买铵肥的运输费用,两者之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论